skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Salgado, Abner J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study a non-local optimal control problem involving a linear, bond-based peridynamics model. In addition to existence and uniqueness of solutions to our problem, we investigate their behavior as the horizon parameter 𝛿, which controls the degree of nonlocality, approaches zero. We then study a finite element-based discretization of this problem, its convergence, and the so-called asymptotic compatibility as the discretization parameter h and the horizon parameter 𝛿 tend to zero simultaneously. 
    more » « less
  2. We consider the interaction between a free flowing fluid and a porous medium flow, where the free flowing fluid is described using the time dependent Stokes equations, and the porous medium flow is described using Darcy’s law in the primal formulation. To solve this problem numerically, we use a diffuse interface approach, where the weak form of the coupled problem is written on an extended domain which contains both Stokes and Darcy regions. This is achieved using a phase-field function which equals one in the Stokes region and zero in the Darcy region, and smoothly transitions between these two values on a diffuse region of width (ϵ) around the Stokes-Darcy interface. We prove convergence of the diffuse interface formulation to the standard, sharp interface formulation, and derive rates of convergence. This is performed by deriving a priori error estimates for discretizations of the diffuse interface method, and by analyzing the modeling error of the diffuse interface approach at the continuous level. The convergence rates are also shown computationally in a numerical example. 
    more » « less
  3. We develop the theory of fractional gradient flows: an evolution aimed at the minimization of a convex, lower semicontinuous energy, with memory effects. This memory is characterized by the fact that the negative of the (sub)gradient of the energy equals the so-called Caputo derivative of the state. We introduce the notion of energy solutions, for which we provide existence, uniqueness and certain regularizing effects. We also consider Lipschitz perturbations of this energy. For these problems we provide an a posteriori error estimate and show its reliability. This estimate depends only on the problem data, and imposes no constraints between consecutive time-steps. On the basis of this estimate we provide an a priori error analysis that makes no assumptions on the smoothness of the solution. 
    more » « less
  4. Abstract We study diagonally implicit Runge-Kutta (DIRK) schemes when applied to abstract evolution problems that fit into the Gelfand-triple framework. We introduce novel stability notions that are well-suited to this setting and provide simple, necessary and sufficient, conditions to verify that a DIRK scheme is stable in our sense and in Bochner-type norms. We use several popular DIRK schemes in order to illustrate cases that satisfy the required structural stability properties and cases that do not. In addition, under some mild structural conditions on the problem we can guarantee compactness of families of discrete solutions with respect to time discretization. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
    In Lipschitz two- and three-dimensional domains, we study the existence for the so-called Boussinesq model of thermally driven convection under singular forcing. By singular we mean that the heat source is allowed to belong to [Formula: see text], where [Formula: see text] is a weight in the Muckenhoupt class [Formula: see text] that is regular near the boundary. We propose a finite element scheme and, under the assumption that the domain is convex and [Formula: see text], show its convergence. In the case that the thermal diffusion and viscosity are constants, we propose an a posteriori error estimator and show its reliability. We also explore efficiency estimates. 
    more » « less