Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Vertebrate olfactory receptors (OR) are directly exposed to microorganisms, such as viruses, due to their direct contact with the external environment. A previous study showed that nasal delivery of rhabdovirus IHNV (Infectious hematopoietic necrosis virus) in fish activate nasal immune responses marked by an increase of chemokine CCL19 and prostaglandin synthase expression in olfactory epithelia (OE), and infiltration of CD8+ cells in the OE. We hypothesize that nasal immune responses are activated by action potential signals generated by activated olfactory receptor (OR) neurons in the OE and olfactory bulb (OB). Moreover, this neural circuit can be traced from a specific OR cell type (crypt cell) in the nose to a specific site in the olfactory bulb. We tested our hypothesis by measuring olfactory responses to live attenuated IHNV virus by electro-olfactogram (EOG). We also visualized the IHNV neural circuit after activation of specific OR, and consequent internalization of molecular receptor and IHNV mixed with Alexa dextran 488 3000 MW. Our results showed different EOG olfactory responses to live attenuated IHNV and to the medium where the virus was grown (negative control) in rainbow trout. Olfactory responses followed a dose-response pattern typical of OR. Cross adaptation studies also showed that livemore »
-
African Lungfish Reveal the Evolutionary Origins of Organized Mucosal Lymphoid Tissue in VertebratesOne of the most remarkable innovations of the vertebrate adaptive immune system is the progressive organization of the lymphoid tissues that leads to increased efficiency of immune surveillance and cell interactions. The mucosal immune system of endotherms has evolved organized secondary mucosal lymphoid tissues (O-MALT) such as Peyer’s patches, tonsils, and adenoids. Primitive semi-organized lymphoid nodules or aggregates (LAs) were found in the mucosa of anuran amphibians [ 1 ], suggesting that O-MALT evolved from amphibian LAs ∼250 million years ago [ 1–4 ]. This study shows for the first time the presence of O-MALT in the mucosa of the African lungfish, an extant representative of the closest ancestral lineage to all tetrapods. Lungfish LAs are lymphocyte-rich structures associated with a modified covering epithelium and express all IGH genes except for IGHW2L. In response to infection, nasal LAs doubled their size and increased the expression of CD3 and IGH transcripts. Additionally, de novo organogenesis of inducible LAs resembling mammalian tertiary lymphoid structures was observed. Using deep-sequencing transcriptomes, we identified several members of the tumor necrosis factor (TNF) superfamily, and subsequent phylogenetic analyses revealed its extraordinary diversification within sarcopterygian fish. Attempts to find AICDA in lungfish transcriptomes or by RT-PCR failed,more »