skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Salman, Tara"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fault and performance management systems, in the traditional carrier networks, are based on rule-based diagnostics that correlate alarms and other markers to detect and localize faults and performance issues. As carriers move to Virtual Network Services, based on Network Function Virtualization and multi-cloud deployments, the traditional methods fail to deliver because of the intangibility of the constituent Virtual Network Functions and increased complexity of the resulting architecture. In this paper, we propose a framework, called HYPER-VINES, that interfaces with various management platforms involved to process markers through a system of shallow and deep machine learning models. It then detects and localizes manifested and impending fault and performance issues. Our experiments validate the functionality and feasibility of the framework in terms of accurate detection and localization of such issues and unambiguous prediction of impending issues. Simulations with real network fault datasets show the effectiveness of its architecture in large networks. 
    more » « less