We introduce a non-isothermal phase-field crystal model including heat flux and thermal expansion of the crystal lattice. The fundamental thermodynamic relation between internal energy and entropy, as well as entropy production, is derived analytically and further verified by numerical benchmark simulations. Furthermore, we examine how the different model parameters control density and temperature evolution during dendritic solidification through extensive parameter studies. Finally, we extend our framework to the modeling of open systems considering external mass and heat fluxes. This work sets the ground for a comprehensive mesoscale model of non-isothermal solidification including thermal expansion within an entropy-producing framework, and provides a benchmark for further meso- to macroscopic modeling of solidification.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Hyperuniformity, the suppression of density fluctuations at large length scales, is observed across a wide variety of domains, from cosmology to condensed matter and biological systems. Although the standard definition of hyperuniformity only utilizes information at the largest scales, hyperuniform configurations have distinctive local characteristics. However, the influence of global hyperuniformity on local structure has remained largely unexplored; establishing this connection can help uncover long-range interaction mechanisms and detect hyperuniform traits in finite-size systems. Here, we study the topological properties of hyperuniform point clouds by characterizing their persistent homology and the statistics of local graph neighborhoods. We find that varying the structure factor results in configurations with systematically different topological properties. Moreover, these topological properties are conserved for subsets of hyperuniform point clouds, establishing a connection between finite-sized systems and idealized reference arrangements. Comparing distributions of local topological neighborhoods reveals that the hyperuniform arrangements lie along a primarily one-dimensional manifold reflecting an order-to-disorder transition via hyperuniform configurations. The results presented here complement existing characterizations of hyperuniform phases of matter, and they show how local topological features can be used to detect hyperuniformity in size-limited simulations and experiments.
Published by the American Physical Society 2024 Free, publicly-accessible full text available May 1, 2025 -
Abstract We optimize a numerical time‐stabilization routine for a class of phase‐field crystal (PFC) models of solidification. By numerical experiments, we demonstrate that our simple approach can improve the accuracy of underlying time integration schemes by a few orders of magnitude. We investigate different time integration schemes. Moreover, as a prototypical example for applications, we extend our numerical approach to a PFC model of solidification with an explicit temperature coupling.
-
Abstract Comprehensive investigations of crystalline systems often require methods bridging atomistic and continuum scales. In this context, coarse-grained mesoscale approaches are of particular interest as they allow the examination of large systems and time scales while retaining some microscopic details. The so-called phase-field crystal (PFC) model conveniently describes crystals at diffusive time scales through a continuous periodic field which varies on atomic scales and is related to the atomic number density. To go beyond the restrictive atomic length scales of the PFC model, a complex amplitude formulation was first developed by Goldenfeld et al (2005 Phys. Rev. E 72 020601). While focusing on length scales larger than the lattice parameter, this approach can describe crystalline defects, interfaces, and lattice deformations. It has been used to examine many phenomena including liquid/solid fronts, grain boundary energies, and strained films. This topical review focuses on this amplitude expansion of the PFC model and its developments. An overview of the derivation, connection to the continuum limit, representative applications, and extensions is presented. A few practical aspects, such as suitable numerical methods and examples, are illustrated as well. Finally, the capabilities and bounds of the model, current challenges, and future perspectives are addressed.more » « less
-
Abstract We present a phase-field crystal model for solidification that accounts for thermal transport and a temperature-dependent lattice parameter. Elasticity effects are characterized through the continuous elastic field computed from the microscopic density field. We showcase the model capabilities via selected numerical investigations which focus on the prototypical growth of two-dimensional crystals from the melt, resulting in faceted shapes and dendrites. This work sets the grounds for a comprehensive mesoscale model of solidification including thermal expansion.
-
Abstract Crystal lattice deformations can be described microscopically by explicitly accounting for the position of atoms or macroscopically by continuum elasticity. In this work, we report on the description of continuous elastic fields derived from an atomistic representation of crystalline structures that also include features typical of the microscopic scale. Analytic expressions for strain components are obtained from the complex amplitudes of the Fourier modes representing periodic lattice positions, which can be generally provided by atomistic modeling or experiments. The magnitude and phase of these amplitudes, together with the continuous description of strains, are able to characterize crystal rotations, lattice deformations, and dislocations. Moreover, combined with the so-called amplitude expansion of the phase-field crystal model, they provide a suitable tool for bridging microscopic to macroscopic scales. This study enables the in-depth analysis of elasticity effects for macroscale and mesoscale systems taking microscopic details into account.
-
We discuss two doubly degenerate Cahn–Hilliard (DDCH) models for isotropic surface diffusion. Degeneracy is introduced in both the mobility function and a restriction function associated to the chemical potential. Our computational results suggest that the restriction functions yield more accurate approximations of surface diffusion. We consider a slight generalization of a model that has appeared before, which is non‐variational, meaning there is no clear energy that is dissipated along the solution trajectories. We also introduce a new variational and, more precisely, energy dissipative model, which can be related to the generalized non‐variational model. For both models, we use formal matched asymptotics to show the convergence to the sharp‐interface limit of surface diffusion.