We present deep optical imaging and photometry of four objects classified as “Almost-Dark” galaxies in the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) survey because of their gas-rich nature and extremely faint or missing optical emission in existing catalogs. They have H
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract i masses of 107–109M ⊙and distances of ∼9–100 Mpc. Observations with the WIYN 3.5 m telescope and One Degree Imager reveal faint stellar components with central surface brightnesses of ∼24–25 in theg band. We also present the results of Hi synthesis observations with the Westerbork Synthesis Radio Telescope. These Almost-Dark galaxies have been identified as possible tidal dwarf galaxies (TDGs) based on their proximity to one or more massive galaxies. We demonstrate that AGC 229398 and AGC 333576 likely have the low dark matter content and large effective radii representative of TDGs. They are located much farther from their progenitors than previously studied TDGs, suggesting they are older and more evolved. AGC 219369 is likely dark matter dominated, while AGC 123216 has a dark matter content that is unusually high for a TDG, but low for a normal dwarf galaxy. We consider possible mechanisms for the formation of the TDG candidates such as a traditional major merger scenariomore » -
Abstract We present environmental analyses for 13 KPNO International Spectroscopic Survey Green Pea (GP) galaxies. These galaxies were discovered via their strong [O
iii ] emission in the redshift range 0.29 <z < 0.42, and they are undergoing a major burst of star formation. A primary goal of this study is to understand what role the environment plays in driving the current star formation activity. By studying the environments around these extreme star-forming galaxies, we can learn more about what triggers their star formation processes and how they fit into the narrative of galaxy evolution. Using the Hydra multifiber spectrograph on the WIYN 3.5 m telescope, we mapped out the galaxy distribution around each of the GPs (out to ∼15 Mpc at the redshifts of the targets). Using three density analysis methodologies chosen for their compatibility with the geometry of our redshift survey, we categorized the galaxian densities of the GPs into different density regimes. We find that the GPs in our sample tend to be located in low-density environments. We find no correlation between the density and the SFRs seen in the GPs. We conclude that the environments the GPs are found in are likely not the driving factor behind their extrememore » -
ABSTRACT We re-examine the extremely metal-poor dwarf galaxy AGC 198691 using a high quality spectrum obtained by the LBT’s MODS instrument. Previous spectral observations obtained from KOSMOS on the Mayall 4-m and the Blue channel spectrograph on the MMT 6.5-m telescope did not allow for the determination of sulfur, argon, or helium abundances. We report an updated and full chemical abundance analysis for AGC 198691, including confirmation of the extremely low “direct” oxygen abundance with a value of 12 + log (O/H) = 7.06 ± 0.03. AGC 198691’s low metallicity potentially makes it a high value target for helping determine the primordial helium abundance (Yp). Though complicated by a Na i night sky line partially overlaying the He i λ5876 emission line, the LBT/MODS spectrum proved adequate for determining AGC 198691’s helium abundance. We employ the recently expanded and improved model of Aver et al., incorporating higher Balmer and Paschen lines, augmented by the observation of the infrared helium emission line He i λ10830 obtained by Hsyu et al. Applying our full model produced a reliable helium abundance determination, consistent with the expectation for its metallicity. Although this is the lowest metallicity object with a detailed helium abundance, unfortunately, due to its faintness [EW(Hβ) < 100 Å] and the compromised He imore »
-
Abstract We present results from deep H i and optical imaging of AGC 229101, an unusual H i source detected at v helio =7116 km s −1 in the Arecibo Legacy Fast ALFA (ALFALFA) blind H i survey. Initially classified as a candidate “dark” source because it lacks a clear optical counterpart in Sloan Digital Sky Survey (SDSS) or Digitized Sky Survey 2 (DSS2) imaging, AGC 229101 has 10 9.31±0.05 M ⊙ of H i , but an H i line width of only 43 ± 9 km s −1 . Low-resolution Westerbork Synthesis Radio Telescope (WSRT) imaging and higher-resolution Very Large Array (VLA) B-array imaging show that the source is significantly elongated, stretching over a projected length of ∼80 kpc. The H i imaging resolves the source into two parts of roughly equal mass. WIYN partially populated One Degree Imager (pODI) optical imaging reveals a faint, blue optical counterpart coincident with the northern portion of the H i . The peak surface brightness of the optical source is only μ g ∼ 26.6 mag arcsec −2 , well below the typical cutoff that defines the isophotal edge of a galaxy, and its estimated stellar mass is only 10 7.32±0.33more »
-
Abstract We present rest-frame optical emission-line flux ratio measurements for five
z > 5 galaxies observed by the James Webb Space Telescope Near-Infared Spectrograph (NIRSpec) in the SMACS 0723 Early Release Observations. We add several quality-control and post-processing steps to the NIRSpec pipeline reduction products in order to ensure reliablerelative flux calibration of emission lines that are closely separated in wavelength, despite the uncertainabsolute spectrophotometry of the current version of the reductions. Compared toz ∼ 3 galaxies in the literature, thez > 5 galaxies have similar [Oiii ]λ 5008/Hβ ratios, similar [Oiii ]λ 4364/Hγ ratios, and higher (∼0.5 dex) [NeIII ]λ 3870/[OII ]λ 3728 ratios. We compare the observations to MAPPINGS V photoionization models and find that the measured [NeIII ]λ 3870/[OII ]λ 3728, [Oiii ]λ 4364/Hγ , and [Oiii ]λ 5008/Hβ emission-line ratios are consistent with an interstellar medium (ISM) that has very high ionization ( , units of cm s−1), low metallicity (Z /Z ⊙≲ 0.2), and very high pressure ( , units of cm−3). The combination of [Oiii ]λ 4364/Hγ and [Oiii ]λ (4960 + 5008)/Hβ line ratios indicate very high electron temperatures of , further implying metallicities ofZ /Z ⊙≲ 0.2 with the application of low-redshift calibrations for “T e -based” metallicities. These observations represent a tantalizing new view of the physical conditions of the ISM in galaxies atmore » -
ABSTRACT We study the gas kinematics of a sample of six isolated gas-rich low surface brightness galaxies, of the class called ultra-diffuse galaxies (UDGs). These galaxies have recently been shown to be outliers from the baryonic Tully–Fisher relation (BTFR), as they rotate much slower than expected given their baryonic mass, and to have a baryon fraction similar to the cosmological mean. By means of a 3D kinematic modelling fitting technique, we show that the H i in our UDGs is distributed in ‘thin’ regularly rotating discs and we determine their rotation velocity and gas velocity dispersion. We revisit the BTFR adding galaxies from other studies. We find a previously unknown trend between the deviation from the BTFR and the exponential disc scale length valid for dwarf galaxies with circular speeds ≲ 45 km s−1, with our UDGs being at the extreme end. Based on our findings, we suggest that the high baryon fractions of our UDGs may originate due to the fact that they have experienced weak stellar feedback, likely due to their low star formation rate surface densities, and as a result they did not eject significant amounts of gas out of their discs. At the same time, we find indications thatmore »