skip to main content

Search for: All records

Creators/Authors contains: "Salzman, O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In multi-objective search, edges are annotated with cost vectors consisting of multiple cost components. A path dominates another path with the same start and goal vertices iff the component-wise sum of the cost vectors of the edges of the former path is 'less than' the component-wise sum of the cost vectors of the edges of the latter path. The Pareto-optimal solution set is the set of all undominated paths from a given start vertex to a given goal vertex. Its size can be exponential in the size of the graph being searched, which makes multi-objective search time-consuming. In this paper, we therefore study how to find an approximate Pareto-optimal solution set for a user-provided vector of approximation factors. The size of such a solution set can be significantly smaller than the size of the Pareto-optimal solution set, which enables the design of approximate multi-objective search algorithms that are efficient and produce small solution sets. We present such an algorithm in this paper, called A*pex. A*pex builds on PPA*, a state-of-the-art approximate bi-objective search algorithm (where there are only two cost components) but (1) makes PPA* more efficient for bi-objective search and (2) generalizes it to multi-objective search for any numbermore »of cost components. We first analyze the correctness of A*pex and then experimentally demonstrate its efficiency advantage over existing approximate algorithms for bi- and tri-objective search.« less
    Free, publicly-accessible full text available January 1, 2023
  2. The Pareto-optimal frontier for a bi-objective search problem instance consists of all solutions that are not worse than any other solution in both objectives. The size of the Pareto-optimal frontier can be exponential in the size of the input graph, and hence finding it can be hard. Some existing works leverage a user-specified approximation factor ε to compute an approximate Pareto-optimal frontier that can be significantly smaller than the Pareto-optimal frontier. In this paper, we propose an anytime approximate bi-objective search algorithm, called Anytime Bi-Objective A*-ε (A-BOA*ε). A-BOA*ε is useful when deliberation time is limited. It first finds an approximate Pareto-optimal frontier quickly, iteratively improves it while time allows, and eventually finds the Pareto-optimal frontier. It efficiently reuses the search effort from previous iterations and makes use of a novel pruning technique. Our experimental results show that A-BOA*ε substantially outperforms baseline algorithms that do not reuse previous search effort, both in terms of runtime and number of node expansions. In fact, the most advanced variant of A-BOA*ε even slightly outperforms BOA*, a state-of-the-art bi-objective search algorithm, for finding the Pareto-optimal frontier. Moreover, given only a limited amount of deliberation time, A-BOA*ε finds solutions that collectively approximate the Pareto-optimal frontier muchmore »better than the solutions found by BOA*.« less
    Free, publicly-accessible full text available January 1, 2023
  3. There are many settings that extend the basic shortest-path search problem. In Bounded-Cost Search, we are given a constant bound, and the task is to find a solution within the bound. In Bi-Objective Search, each edge is associated with two costs (objectives), and the task is to minimize both objectives. In this paper, we combine both settings into a new setting of Bounded-Cost Bi-Objective Search. We are given two bounds, one for each objective, and the task is to find a solution within these bounds. We provide a scheme for normalizing the two objectives, introduce several algorithms for this new setting and compare them experimentally.
    Free, publicly-accessible full text available January 1, 2023