Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2026
-
Abstract As Deep Neural Networks (DNNs) are being increasingly employed to make important simulations in rainfall‐runoff contexts, the demand for interpretability is increasing in the hydrology community. Interpretability is not just a scientific question, but rather knowing where the models fall flat, how to fix them, and how to explain their outcomes to scientific communities so that everyone understands how the model arrives at specific simulations This paper addresses these challenges by deciphering interpretable probabilistic DNNs utilizing the Deep Autoregressive Recurrent (DeepAR) and Temporal Fusion Transformer (TFT) for daily streamflow simulation across the continental United States (CONUS). We benchmarked TFT and DeepAR against conceptual to physics‐based hydrologic models. In this setting, catchment physical attributes were incorporated into the training process to create physics‐guided TFT and DeepAR configurations. Our proposed physics‐guided configurations are also designed to aggregate the patterns across the entire data set, analyze the sensitivity of key catchment physical attributes and facilitate the interpretability of temporal dynamics in rainfall‐runoff generation mechanisms. To assess the uncertainty, the modeling configurations were coupled with a quantile regression by adding Gaussian noise with increasing standard deviation to the individual catchment attributes. Analysis suggested that the physics‐guided TFT was superior in predicting daily streamflow compared to the original TFT and DeepAR as well as benchmark hydrologic models. Predictive uncertainty intervals effectively bracketed most of the observational data by simultaneous simulation of various percentiles (e.g., 10th, 50th, and 90th). Interpretable physics‐guided TFT proved to be a strong candidate for CONUS daily streamflow simulations.more » « less
-
ABSTRACT In recent years, numerous flood events have caused loss of life, widespread disruption, and damage across the globe. These devastating impacts highlight the importance of a better understanding of flood generating processes, their impacts, and their variability under climate and landscape changes. Here, we argue that the ability to better model flooding is underpinned by the grand challenge of understanding flood generation mechanisms and potential impacts. To address this challenge, the World Meteorological Organization‐Global Energy and Water Exchanges (GEWEX) Hydrometeorology Panel (GHP) aims to establish a Global Flood Crosscutting project to propagate flood modeling and research knowledge across regions and to synthesize results at the global scale. This paper outlines a framework for understanding the dynamics and impacts of runoff generation processes and a rationale for the role of a Global Flood Crosscutting project to address these challenges. Within this Global Flood Crosscutting project, we will establish a common terminology and methods to enable the global research community to exchange knowledge and experiences, and to design experiments toward developing actionable recommendations for more effective flood management practices and policies for improved resilience. This harmonization of rich perspectives across disciplines will foster the co‐production of knowledge primed to advance flood research, particularly in the current period of heightened climate variability and rapid change. It will create a new transdisciplinary paradigm for flood science, wherein different dimensions of mechanistic understanding and processes are rigorously considered alongside socioeconomic impacts, early warning communications, and longer‐term adaptation to alleviate flood risks in society.more » « less
An official website of the United States government
