skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Samaraweera, Rasanga"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Graphene specimens produced by chemical vapor deposition usually show p-type characteristics and significant hysteresis in ambient conditions. Among many methods, current annealing appears to be a better way of cleaning the sample due to the possibility of in-situ annealing in the measurement setup. However, long-time current annealing could increase defects in the underlying substrate. Studying the hysteresis with different anneal currents in a graphene device is, therefore, a topic of interest. In this experimental work, we investigate electron/hole transport in a graphene sample in the form of a Hall bar device with a back gate, where the graphene was prepared using chemical vapor deposition on copper foils. We study the hysteresis before and after current annealing the sample by cooling down to a temperature of 35 Kfrom room temperature with a back-gate bias in a closed cycle refrigerator. 
    more » « less