skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Sample, J. G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    We provide evidence that Terrestrial Gamma‐Ray Flashes (TGFs), in well isolated thunderstorms, tend to occur during periods of low and declining flash rates, and when the flash amplitudes are larger than average. This conclusion comes from examining the results of 371 manually tracked TGF‐producing thunderstorms. Fermi‐GBM identified TGFs are used for this analysis and lightning data come from both World Wide Lightning Location Network and Earth Networks Total Lightning Network. The data from these storms suggest that TGFs are likely to occur in almost every phase of storms that last longer than an hour, but tend to occur later on in shorter storms. We also note that, in short storms, TGFs are more likely to accompany a flash when the flash rates of the storm are lower than average, and they are less likely per flash during the peak flash rate periods of the storms. We find that the tendency for TGFs to occur while the flash rate is falling and when the amplitudes of flashes (the sum of the absolute values of peak currents of all constituent sferics in the flash) are larger than average, does not depend strongly on the duration of the storms. This implies that not just any lightning flash can or even will produce a TGF, but that the electrical conditions of the storm play a crucial role in TGF production.

     
    more » « less
  3. Abstract

    This study considers the impact of electron precipitation from Earth's radiation belts on atmospheric composition using observations from the NASA Van Allen Probes and NSF Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics (FIREBIRD II) CubeSats. Ratios of electron flux between the Van Allen Probes (in near‐equatorial orbit in the radiation belts) and FIREBIRD II (in polar low Earth orbit) during spacecraft conjunctions (2015–2017) allow an estimate of precipitation into the atmosphere. Total Radiation Belt Electron Content, calculated from Van Allen Probes RBSP‐ECT MagEIS data, identifies a sustained 10‐day electron loss event in March 2013 that serves as an initial case study. Atmospheric ionization profiles, calculated by integrating monoenergetic ionization rates across the precipitating electron flux spectrum, provide input to the NCAR Whole Atmosphere Community Climate Model in order to quantify enhancements of atmospheric HOxand NOxand subsequent destruction of O3in the middle atmosphere. Results suggest that current APEEP parameterizations of radiation belt electrons used in Coupled Model Intercomparison Project may underestimate the duration of events as well as higher energy electron contributions to atmospheric ionization and modeled NOxconcentrations in the mesosphere and upper stratosphere.

     
    more » « less