skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Samuroff, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT In cosmology, we routinely choose between models to describe our data, and can incur biases due to insufficient models or lose constraining power with overly complex models. In this paper, we propose an empirical approach to model selection that explicitly balances parameter bias against model complexity. Our method uses synthetic data to calibrate the relation between bias and the χ2 difference between models. This allows us to interpret χ2 values obtained from real data (even if catalogues are blinded) and choose a model accordingly. We apply our method to the problem of intrinsic alignments – one of the most significant weak lensing systematics, and a major contributor to the error budget in modern lensing surveys. Specifically, we consider the example of the Dark Energy Survey Year 3 (DES Y3), and compare the commonly used non-linear alignment (NLA) and tidal alignment and tidal torque (TATT) models. The models are calibrated against bias in the Ωm–S8 plane. Once noise is accounted for, we find that it is possible to set a threshold Δχ2 that guarantees an analysis using NLA is unbiased at some specified level Nσ and confidence level. By contrast, we find that theoretically defined thresholds (based on, e.g. p-values for χ2) tend to be overly optimistic, and do not reliably rule out cosmological biases up to ∼1–2σ. Considering the real DES Y3 cosmic shear results, based on the reported difference in χ2 from NLA and TATT analyses, we find a roughly $$30{{\ \rm per\ cent}}$$ chance that were NLA to be the fiducial model, the results would be biased (in the Ωm–S8 plane) by more than 0.3σ. More broadly, the method we propose here is simple and general, and requires a relatively low level of resources. We foresee applications to future analyses as a model selection tool in many contexts. 
    more » « less
  2. We present a study of the weak lensing inferred matter profiles ΔΣ(R) of 698 South Pole Telescope (SPT) thermal Sunyaev-Zel’dovich effect (tSZE) selected and MCMF optically confirmed galaxy clusters in the redshift range 0.25 <  z <  0.94 that have associated weak gravitational lensing shear profiles from the Dark Energy Survey (DES). Rescaling these profiles to account for the mass dependent size and the redshift dependent density produces average rescaled matter profiles ΔΣ(R/R200c)/(ρcritR200c) with a lower dispersion than the unscaled ΔΣ(R) versions, indicating a significant degree of self-similarity. Galaxy clusters from hydrodynamical simulations also exhibit matter profiles that suggest a high degree of self-similarity, with RMS variation among the average rescaled matter profiles with redshift and mass falling by a factor of approximately six and 23, respectively, compared to the unscaled average matter profiles. We employed this regularity in a new Bayesian method for weak lensing mass calibration that employs the so-called cluster mass posteriorP(M200|ζ̂, λ̂,z), which describes the individual cluster masses given their tSZE (ζ̂) and optical (λ̂,z) observables. This method enables simultaneous constraints on richnessλ-mass and tSZE detection significanceζ-mass relations using average rescaled cluster matter profiles. We validated the method using realistic mock datasets and present observable-mass relation constraints for the SPT×DES sample, where we constrained the amplitude, mass trend, redshift trend, and intrinsic scatter. Our observable-mass relation results are in agreement with the mass calibration derived from the recent cosmological analysis of the SPT×DES data based on a cluster-by-cluster lensing calibration. Our new mass calibration technique offers a higher efficiency when compared to the single cluster calibration technique. We present new validation tests of the observable-mass relation that indicate the underlying power-law form and scatter are adequate to describe the real cluster sample but that also suggest a redshift variation in the intrinsic scatter of theλ-mass relation may offer a better description. In addition, the average rescaled matter profiles offer high signal-to-noise ratio (S/N) constraints on the shape of real cluster matter profiles, which are in good agreement with available hydrodynamical ΛCDM simulations. This high S/N profile contains information about baryon feedback, the collisional nature of dark matter, and potential deviations from general relativity. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. We present constraints on the f ( R ) gravity model using a sample of 1005 galaxy clusters in the redshift range 0.25–1.78 that have been selected through the thermal Sunyaev-Zel’dovich effect from South Pole Telescope data and subjected to optical and near-infrared confirmation with the multicomponent matched filter algorithm. We employ weak gravitational lensing mass calibration from the Dark Energy Survey Year 3 data for 688 clusters at z < 0.95 and from the Hubble Space Telescope for 39 clusters with 0.6 < z < 1.7 . Our cluster sample is a powerful probe of f ( R ) gravity, because this model predicts a scale-dependent enhancement in the growth of structure, which impacts the halo mass function (HMF) at cluster mass scales. To account for these modified gravity effects on the HMF, our analysis employs a semianalytical approach calibrated with numerical simulations. Combining calibrated cluster counts with primary cosmic microwave background temperature and polarization anisotropy measurements from the Planck 2018 release, we derive robust constraints on the f ( R ) parameter f R 0 . Our results, log 10 | f R 0 | < 5.32 at the 95% credible level, are the tightest current constraints on f ( R ) gravity from cosmological scales. This upper limit rules out f ( R ) -like deviations from general relativity that result in more than a 20 % enhancement of the cluster population on mass scales M 200 c > 3 × 10 14 M . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  4. We use galaxy cluster abundance measurements from the South Pole Telescope enhanced by multicomponent matched filter confirmation and complemented with mass information obtained using weak-lensing data from Dark Energy Survey Year 3 (DES Y3) and targeted Hubble Space Telescope observations for probing deviations from the cold dark matter paradigm. Concretely, we consider a class of dark sector models featuring interactions between dark matter (DM) and a dark radiation (DR) component within the framework of the effective theory of structure formation (ETHOS). We focus on scenarios that lead to power suppression over a wide range of scales, and thus can be tested with data sensitive to large scales, as realized, for example, for DM–DR interactions following from an unbroken non-Abelian S U ( N ) gauge theory (interaction rate with power-law index n = 0 within the ETHOS parametrization). Cluster abundance measurements are mostly sensitive to the amount of DR interacting with DM, parametrized by the ratio of DR temperature to the cosmic microwave background (CMB) temperature, ξ DR = T DR / T CMB . We find an upper limit ξ DR < 17 % at 95% credibility. When the cluster data are combined with Planck 2018 CMB data along with baryon acoustic oscillation (BAO) measurements we find ξ DR < 10 % , corresponding to a limit on the abundance of interacting DR that is around 3 times tighter than that from CMB + BAO data alone. We also discuss the complementarity of weak lensing informed cluster abundance studies with probes sensitive to smaller scales, explore the impact on our analysis of massive neutrinos, and comment on a slight preference for the presence of a nonzero interacting DR abundance, which enables a physical solution to the S 8 tension. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  5. null (Ed.)
    ABSTRACT Galaxy intrinsic alignments (IAs) have long been recognized as a significant contaminant to weak lensing-based cosmological inference. In this paper we seek to quantify the impact of a common modelling assumption in analytic descriptions of IAs: that of spherically symmetric dark matter haloes. Understanding such effects is important as the current generation of IA models are known to be limited, particularly on small scales, and building an accurate theoretical description will be essential for fully exploiting the information in future lensing data. Our analysis is based on a catalogue of 113 560 galaxies between z = 0.06 and 1.00 from massiveblack-ii, a hydrodynamical simulation of box length $$100 \, h^{-1}$$ Mpc. We find satellite anisotropy contributes at the level of $$\ge 30\!-\!40{{\ \rm per\ cent}}$$ to the small-scale alignment correlation functions. At separations larger than $$1 \, h^{-1}$$ Mpc the impact is roughly scale independent, inducing a shift in the amplitude of the IA power spectra of $$\sim 20{{\ \rm per\ cent}}$$. These conclusions are consistent across the redshift range and between the massiveblack-ii and the illustris simulations. The cosmological implications of these results are tested using a simulated likelihood analysis. Synthetic cosmic shear data are constructed with the expected characteristics (depth, area, and number density) of a future LSST-like survey. Our results suggest that modelling alignments using a halo model based upon spherical symmetry could potentially induce cosmological parameter biases at the ∼1.5σ level for S8 and w. 
    more » « less
  6. ABSTRACT Extracting precise cosmology from weak lensing surveys requires modelling the non-linear matter power spectrum, which is suppressed at small scales due to baryonic feedback processes. However, hydrodynamical galaxy formation simulations make widely varying predictions for the amplitude and extent of this effect. We use measurements of Dark Energy Survey Year 3 weak lensing (WL) and Atacama Cosmology Telescope DR5 kinematic Sunyaev–Zel’dovich (kSZ) to jointly constrain cosmological and astrophysical baryonic feedback parameters using a flexible analytical model, ‘baryonification’. First, using WL only, we compare the $$S_8$$ constraints using baryonification to a simulation-calibrated halo model, a simulation-based emulator model, and the approach of discarding WL measurements on small angular scales. We find that model flexibility can shift the value of $$S_8$$ and degrade the uncertainty. The kSZ provides additional constraints on the astrophysical parameters, with the joint WL + kSZ analysis constraining $$S_8=0.823^{+0.019}_{-0.020}$$. We measure the suppression of the non-linear matter power spectrum using WL + kSZ and constrain a mean feedback scenario that is more extreme than the predictions from most hydrodynamical simulations. We constrain the baryon fractions and the gas mass fractions and find them to be generally lower than inferred from X-ray observations and simulation predictions. We conclude that the WL + kSZ measurements provide a new and complementary benchmark for building a coherent picture of the impact of gas around galaxies across observations. 
    more » « less
  7. Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the Universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest analyses of the lensing-informed abundance of clusters identified by the South Pole Telescope (SPT) and of the auto- and cross-correlation of galaxy position and weak lensing measurements ( 3 × 2 pt ) in the Dark Energy Survey (DES). We consider the cosmological correlation between the different tracers and we account for the systematic uncertainties that are shared between the large-scale lensing correlation functions and the small-scale lensing-based cluster mass calibration. Marginalized over the remaining Λ cold dark matter ( Λ CDM ) parameters (including the sum of neutrino masses) and 52 astrophysical modeling parameters, we measure Ω m = 0.300 ± 0.017 and σ 8 = 0.797 ± 0.026 . Compared to constraints from primary cosmic microwave background (CMB) anisotropies, our constraints are only 15% wider with a probability to exceed of 0.22 ( 1.2 σ ) for the two-parameter difference. We further obtain S 8 σ 8 ( Ω m / 0.3 ) 0.5 = 0.796 ± 0.013 which is lower than the measurement at the 1.6 σ level. The combined SPT cluster, DES 3 × 2 pt , and datasets mildly prefer a nonzero positive neutrino mass, with a 95% upper limit m ν < 0.25 eV on the sum of neutrino masses. Assuming a w CDM model, we constrain the dark energy equation of state parameter w = 1.1 5 0.17 + 0.23 and when combining with primary CMB anisotropies, we recover w = 1.2 0 0.09 + 0.15 , a 1.7 σ difference with a cosmological constant. The precision of our results highlights the benefits of multiwavelength multiprobe cosmology and our analysis paves the way for upcoming joint analyses of next-generation datasets. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  8. We present a measurement of the cross-correlation between theMagLimgalaxies selected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic microwave background (CMB) lensing from the Atacama Cosmology Telescope (ACT) Data Release 4 (DR4), reconstructed over ∼ 436 sq. deg of the sky. Our galaxy sample, which covers ∼ 4143 sq. deg, is divided into six redshift bins spanning the redshift range of 0.20 < z < 1.05. We adopt a blinding procedure until passing all consistency and systematics tests. After imposing scale cuts for the cross-power spectrum measurement, we reject the null hypothesis of no correlation at 9.1σ. We constrain cosmological parameters from a joint analysis of galaxy and CMB lensing-galaxy power spectra considering a flat ΛCDM model, marginalized over 23 astrophysical and systematic nuisance parameters. We find the clustering amplitude S_8 ≡ σ_8(Ω_m/0.3)^0.5 = 0.75+0.04-0.05. In addition, we constrain the linear growth of cosmic structure as a function of redshift. Our results are consistent with recent DES Y3 analyses and suggest a preference for a lower S_8 compared to results from measurements of CMB anisotropies by the Planck satellite, although at a mild level (< 2σ) of statistical significance. 
    more » « less