skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Samuroff, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Using 1533 type Ia supernovae (SNe Ia) from the 5-yr sample of the Dark Energy Survey (DES), we investigate the relationship between the projected galactocentric separation of the SNe and their host galaxies and their light curves and standardization. We show, for the first time, that the difference in SN Ia post-standardization brightnesses between high- and low-mass hosts reduces from $0.078\pm 0.011$ mag in the full sample to $0.036 \pm 0.018$ mag for SNe Ia located in the outer regions of their host galaxies, while increasing to $0.100 \pm 0.014$ mag for SNe in the inner regions. The difference in the size of the mass step between inner and outer regions is $0.064\pm 0.023$ mag. In these inner regions, the step can be reduced (but not removed) using a model where the $R_V$ of dust along the line of sight to the SN changes as a function of galaxy properties. We investigate the remaining difference using the distributions of the SN Ia stretch parameter to test the inferred age of SN progenitors. Comparing red (older) environments only, outer regions have a higher proportion of high-stretch SNe and a more homogeneous stretch distribution. However, this effect cannot explain the reduction in significance of any Hubble residual step in outer regions. We conclude that the standardized distances of SNe Ia located in the outer regions of galaxies are less affected by their global host galaxy properties than those in the inner regions.

     
    more » « less
  2. ABSTRACT

    In cosmology, we routinely choose between models to describe our data, and can incur biases due to insufficient models or lose constraining power with overly complex models. In this paper, we propose an empirical approach to model selection that explicitly balances parameter bias against model complexity. Our method uses synthetic data to calibrate the relation between bias and the χ2 difference between models. This allows us to interpret χ2 values obtained from real data (even if catalogues are blinded) and choose a model accordingly. We apply our method to the problem of intrinsic alignments – one of the most significant weak lensing systematics, and a major contributor to the error budget in modern lensing surveys. Specifically, we consider the example of the Dark Energy Survey Year 3 (DES Y3), and compare the commonly used non-linear alignment (NLA) and tidal alignment and tidal torque (TATT) models. The models are calibrated against bias in the Ωm–S8 plane. Once noise is accounted for, we find that it is possible to set a threshold Δχ2 that guarantees an analysis using NLA is unbiased at some specified level Nσ and confidence level. By contrast, we find that theoretically defined thresholds (based on, e.g. p-values for χ2) tend to be overly optimistic, and do not reliably rule out cosmological biases up to ∼1–2σ. Considering the real DES Y3 cosmic shear results, based on the reported difference in χ2 from NLA and TATT analyses, we find a roughly $30{{\ \rm per\ cent}}$ chance that were NLA to be the fiducial model, the results would be biased (in the Ωm–S8 plane) by more than 0.3σ. More broadly, the method we propose here is simple and general, and requires a relatively low level of resources. We foresee applications to future analyses as a model selection tool in many contexts.

     
    more » « less
  3. ABSTRACT

    The present state of cosmology is facing a crisis where there is a fundamental disagreement in measurements of the Hubble constant ($H_{0}$), with significant tension between the early and late Universe methods. Type Ia supernovae (SNe Ia) are important to measuring $H_{0}$ through the astronomical distance ladder. However, there remains potential to better standardize SN Ia light curves by using known dependencies on host galaxy properties after the standard light curve width and colour corrections have been applied to the peak SN Ia luminosities. To explore this, we use the 5-yr photometrically identified SNe Ia sample obtained by the Dark Energy Survey, along with host galaxy spectra obtained by the Australian Dark Energy Survey. Using host galaxy spectroscopy, we find a significant trend with the equivalent width (EW) of the [O ii] $\lambda \lambda$ 3727, 29 doublet, a proxy for specific star formation rate, and Hubble residuals. We find that the correlation with [O ii] EW is a powerful alternative to the commonly used mass step after initial light-curve corrections. Applying this [O ii] EW correction to 20 SNe Ia in calibrator galaxies observed with WiFeS, we examined the impact on SN Ia absolute magnitudes and $H_{0}$. Our [O ii] EW corrections result in $H_{0}$ values ranging between 73.04 and 73.51 $\mathrm{km \, s^{-1} \, Mpc^{-1}}$, with a combined statistical and systematic uncertainty of $\sim 1.31 \, \mathrm{km \, s^{-1} \, Mpc^{-1}}$. However, even with this additional correction, the impact of host galaxy properties in standardizing SNe Ia appears limited in reducing the current tension ($\sim 5\sigma$) with the cosmic microwave background result for $H_{0}$.

     
    more » « less
  4. ABSTRACT

    The weak gravitational lensing magnification of Type Ia supernovae (SNe Ia) is sensitive to the matter power spectrum on scales $k\gt 1 h$ Mpc$^{-1}$, making it unwise to interpret SNe Ia lensing in terms of power on linear scales. We compute the probability density function of SNe Ia magnification as a function of standard cosmological parameters, plus an empirical parameter $A_{\rm mod}$ which describes the suppression or enhancement of matter power on non-linear scales compared to a cold dark matter only model. While baryons are expected to enhance power on the scales relevant to SN Ia lensing, other physics such as neutrino masses or non-standard dark matter may suppress power. Using the Dark Energy Survey Year-5 sample, we find $A_{\rm mod} = 0.77^{+0.69}_{-0.40}$ (68 per cent credible interval around the median). Although the median is consistent with unity there are hints of power suppression, with $A_{\rm mod} \lt 1.09$ at 68 per cent credibility.

     
    more » « less
  5. ABSTRACT

    Using a sample of 2800 galaxy clusters identified in the Dark Energy Survey across the redshift range $0.20 \lt z \lt 0.60$, we characterize the hierarchical assembly of bright central galaxies (BCGs) and the surrounding intracluster light (ICL). To quantify hierarchical formation we use the stellar mass–halo mass (SMHM) relation, comparing the halo mass, estimated via the mass–richness relation, to the stellar mass within the BCG + ICL system. Moreover, we incorporate the magnitude gap (M14), the difference in brightness between the BCG (measured within 30 kpc) and fourth brightest cluster member galaxy within 0.5 $R_{200,c}$, as a third parameter in this linear relation. The inclusion of M14, which traces BCG hierarchical growth, increases the slope and decreases the intrinsic scatter, highlighting that it is a latent variable within the BCG + ICL SMHM relation. Moreover, the correlation with M14 decreases at large radii. However, the stellar light within the BCG + ICL transition region (30 –80 kpc) most strongly correlates with halo mass and has a statistically significant correlation with M14. Since the transition region and M14 are independent measurements, the transition region may grow due to the BCG’s hierarchical formation. Additionally, as M14 and ICL result from hierarchical growth, we use a stacked sample and find that clusters with large M14 values are characterized by larger ICL and BCG + ICL fractions, which illustrates that the merger processes that build the BCG stellar mass also grow the ICL. Furthermore, this may suggest that M14 combined with the ICL fraction can identify dynamically relaxed clusters.

     
    more » « less
  6. ABSTRACT

    Gravitational lensing magnification of Type Ia supernovae (SNe Ia) allows information to be obtained about the distribution of matter on small scales. In this paper, we derive limits on the fraction $\alpha$ of the total matter density in compact objects (which comprise stars, stellar remnants, small stellar groupings, and primordial black holes) of mass M > 0.03 ${\rm M}_{\odot }$ over cosmological distances. Using 1532 SNe Ia from the Dark Energy Survey Year 5 sample (DES-SN5YR) combined with a Bayesian prior for the absolute magnitude M, we obtain α < 0.12 at the 95 per cent confidence level after marginalization over cosmological parameters, lensing due to large-scale structure, and intrinsic non-Gaussianity. Similar results are obtained using priors from the cosmic microwave background, baryon acoustic oscillations, and galaxy weak lensing, indicating our results do not depend on the background cosmology. We argue our constraints are likely to be conservative (in the sense of the values we quote being higher than the truth), but discuss scenarios in which they could be weakened by systematics of the order of $\Delta \alpha \sim 0.04$.

     
    more » « less
  7. ABSTRACT

    We present the joint tomographic analysis of galaxy-galaxy lensing and galaxy clustering in harmonic space (HS), using galaxy catalogues from the first three years of observations by the Dark Energy Survey (DES Y3). We utilize the redMaGiC and MagLim catalogues as lens galaxies and the metacalibration catalogue as source galaxies. The measurements of angular power spectra are performed using the pseudo-$C_\ell$ method, and our theoretical modelling follows the fiducial analyses performed by DES Y3 in configuration space, accounting for galaxy bias, intrinsic alignments, magnification bias, shear magnification bias and photometric redshift uncertainties. We explore different approaches for scale cuts based on non-linear galaxy bias and baryonic effects contamination. Our fiducial covariance matrix is computed analytically, accounting for mask geometry in the Gaussian term, and including non-Gaussian contributions and super-sample covariance terms. To validate our HS pipelines and covariance matrix, we used a suite of 1800 log-normal simulations. We also perform a series of stress tests to gauge the robustness of our HS analysis. In the $\Lambda$CDM model, the clustering amplitude $S_8 =\sigma _8(\Omega _m/0.3)^{0.5}$ is constrained to $S_8 = 0.704\pm 0.029$ and $S_8 = 0.753\pm 0.024$ (68 per cent C.L.) for the redMaGiC and MagLim catalogues, respectively. For the wCDM, the dark energy equation of state is constrained to $w = -1.28 \pm 0.29$ and $w = -1.26^{+0.34}_{-0.27}$, for redMaGiC and MagLim catalogues, respectively. These results are compatible with the corresponding DES Y3 results in configuration space and pave the way for HS analyses using the DES Y6 data.

     
    more » « less
  8. ABSTRACT

    Extracting precise cosmology from weak lensing surveys requires modelling the non-linear matter power spectrum, which is suppressed at small scales due to baryonic feedback processes. However, hydrodynamical galaxy formation simulations make widely varying predictions for the amplitude and extent of this effect. We use measurements of Dark Energy Survey Year 3 weak lensing (WL) and Atacama Cosmology Telescope DR5 kinematic Sunyaev–Zel’dovich (kSZ) to jointly constrain cosmological and astrophysical baryonic feedback parameters using a flexible analytical model, ‘baryonification’. First, using WL only, we compare the $S_8$ constraints using baryonification to a simulation-calibrated halo model, a simulation-based emulator model, and the approach of discarding WL measurements on small angular scales. We find that model flexibility can shift the value of $S_8$ and degrade the uncertainty. The kSZ provides additional constraints on the astrophysical parameters, with the joint WL + kSZ analysis constraining $S_8=0.823^{+0.019}_{-0.020}$. We measure the suppression of the non-linear matter power spectrum using WL + kSZ and constrain a mean feedback scenario that is more extreme than the predictions from most hydrodynamical simulations. We constrain the baryon fractions and the gas mass fractions and find them to be generally lower than inferred from X-ray observations and simulation predictions. We conclude that the WL + kSZ measurements provide a new and complementary benchmark for building a coherent picture of the impact of gas around galaxies across observations.

     
    more » « less