skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sancier-Barbosa, Flavia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Plant phenological and growth responses to experimental warming are widely documented, but less is known about warming effects on plant–pollinator interactions. We investigated the effects of short- and long-term passive warming on flowering phenology, insect visitation, fruit production, and floral rewards in the Low Arctic in northern Alaska. To better understand the role of insect visitors in plant reproductive success, we quantified pollen loads on floral visitors and tested for pollen limitation in four species. Long-term warming advanced flowering onset in evergreen shrubs and forbs. Warming, in general, increased the duration of flowering for forbs, evergreen shrubs, and deciduous shrubs. Considering all growth forms together, long-term warming increased floral density. This pattern was primarily driven by deciduous and evergreen shrubs. Dipterans accounted for more visits than Hymenopterans, although Hymenopterans had higher pollen loads. Insect exclusion and warming decreased fruit set in the forb, Bistorta officinalis Delarbre. Nectar volume in the deciduous shrub, Vaccinium uliginosum, was higher in the warmed plots than the control, but nectar quality did not differ. Advanced flowering onset, longer flowering duration, and increased flower density and nectar volume may have important implications for the pollinator community, warranting further research on long-term warming effects on tundra ecosystems. 
    more » « less