skip to main content

Search for: All records

Creators/Authors contains: "Sand, D. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Type Ia supernovae (SNe Ia) are important cosmological tools, probes of binary star evolution, and contributors to cosmic metal enrichment; yet, a definitive understanding of the binary star systems that produce them remains elusive. Of particular interest is the identity of the mass-donor companion to the exploding carbon–oxygen white dwarf (CO WD). In this work, we present early-time (first observation within 10 days post-explosion) radio observations of six nearby (within 40 Mpc) SNe Ia taken by the Jansky Very Large Array, which are used to constrain the presence of synchrotron emission from the interaction between ejecta and circumstellar material (CSM). The two motivations for these early-time observations are: (1) to constrain the presence of low-density winds and (2) to provide an additional avenue of investigation for those SNe Ia observed to have early-time optical/UV excesses that may be due to CSM interaction. We detect no radio emission from any of our targets. Toward our first aim, these non-detections further increase the sample of SNe Ia that rule out winds from symbiotic binaries and strongly accreting white dwarfs. and discuss the dependence on underlying model assumptions and how our observations represent a large increase in the sample of SNe Ia with low-density wind constraints. For the second aim, we present a radiation hydrodynamics simulation to explore radio emission from an SN Ia interacting with a compact shell of CSM, and find that relativistic electrons cannot survive to produce radio emission despite the rapid expansion of the shocked shell after shock breakout. The effects of model assumptions are discussed for both the wind and compact shell conclusions.

    more » « less
  2. Abstract We report the discovery of Pegasus IV, an ultra-faint dwarf galaxy found in archival data from the Dark Energy Camera processed by the DECam Local Volume Exploration Survey. Pegasus IV is a compact, ultra-faint stellar system ( r 1 / 2 = 41 − 6 + 8 pc; M V = −4.25 ± 0.2 mag) located at a heliocentric distance of 90 − 6 + 4 kpc . Based on spectra of seven nonvariable member stars observed with Magellan/IMACS, we confidently resolve Pegasus IV’s velocity dispersion, measuring σ v = 3.3 − 1.1 + 1.7 km s −1 (after excluding three velocity outliers); this implies a mass-to-light ratio of M 1 / 2 / L V , 1 / 2 = 167 − 99 + 224 M ⊙ / L ⊙ for the system. From the five stars with the highest signal-to-noise spectra, we also measure a systemic metallicity of [Fe/H] = − 2.63 − 0.30 + 0.26 dex, making Pegasus IV one of the most metal-poor ultra-faint dwarfs. We tentatively resolve a nonzero metallicity dispersion for the system. These measurements provide strong evidence that Pegasus IV is a dark-matter-dominated dwarf galaxy, rather than a star cluster. We measure Pegasus IV’s proper motion using data from Gaia Early Data Release 3, finding ( μ α * , μ δ ) = (0.33 ± 0.07, −0.21 ± 0.08) mas yr −1 . When combined with our measured systemic velocity, this proper motion suggests that Pegasus IV is on an elliptical, retrograde orbit, and is currently near its orbital apocenter. Lastly, we identify three potential RR Lyrae variable stars within Pegasus IV, including one candidate member located more than 10 half-light radii away from the system’s centroid. The discovery of yet another ultra-faint dwarf galaxy strongly suggests that the census of Milky Way satellites is still incomplete, even within 100 kpc. 
    more » « less
    Free, publicly-accessible full text available January 1, 2024
  3. Abstract

    We present a sample of Type Icn supernovae (SNe Icn), a newly discovered class of transients characterized by their interaction with H- and He-poor circumstellar material (CSM). This sample is the largest collection of SNe Icn to date and includes observations of two published objects (SN 2019hgp and SN 2021csp) and two objects not yet published in the literature (SN 2019jc and SN 2021ckj). The SNe Icn display a range of peak luminosities, rise times, and decline rates, as well as diverse late-time spectral features. To investigate their explosion and progenitor properties, we fit their bolometric light curves to a semianalytical model consisting of luminosity inputs from circumstellar interaction and radioactive decay of56Ni. We infer low ejecta masses (≲2M) and56Ni masses (≲0.04M) from the light curves, suggesting that normal stripped-envelope supernova (SESN) explosions within a dense CSM cannot be the underlying mechanism powering SNe Icn. Additionally, we find that an estimate of the star formation rate density at the location of SN 2019jc lies at the lower end of a distribution of SESNe, in conflict with a massive star progenitor of this object. Based on its estimated ejecta mass,56Ni mass, and explosion site properties, we suggest a low-mass, ultra-stripped star as the progenitor of SN 2019jc. For other SNe Icn, we suggest that a Wolf–Rayet star progenitor may better explain their observed properties. This study demonstrates that multiple progenitor channels may produce SNe Icn and other interaction-powered transients.

    more » « less
  4. Abstract

    We present a comprehensive analysis of 653 optical candidate counterparts reported during the third gravitational-wave (GW) observing run. Our sample concentrates on candidates from the 15 events (published in GWTC-2, GWTC-3, or not retracted on GraceDB) that had a >1% chance of including a neutron star in order to assess their viability as true kilonovae. In particular, we leverage tools available in real time, including pre-merger detections and cross-matching with catalogs (i.e., point-source, variable-star, quasar and host-galaxy redshift data sets), to eliminate 65% of candidates in our sample. We further employ spectroscopic classifications, late-time detections, and light-curve behavior analyses and conclude that 66 candidates remain viable kilonovae. These candidates lack sufficient information to determine their classifications, and the majority would require luminosities greater than that of AT 2017gfo. Pre-merger detections in public photometric survey data and comparison of cataloged host-galaxy redshifts with the GW event distances are critical to incorporate into vetting procedures, as these tools eliminated >20% and >30% of candidates, respectively. We expect that such tools that leverage archival information will significantly reduce the strain on spectroscopic and photometric follow-up resources in future observing runs. Finally, we discuss the critical role prompt updates from GW astronomers to the EM community play in reducing the number of candidates requiring vetting.

    more » « less
  5. null (Ed.)
    ABSTRACT The origin of the diverse light-curve shapes of Type II supernovae (SNe), and whether they come from similar or distinct progenitors, has been actively discussed for decades. Here, we report spectropolarimetry of two fast declining Type II (Type IIL) SNe: SN 2013ej and SN 2017ahn. SN 2013ej exhibited high continuum polarization from very soon after the explosion to the radioactive tail phase with time-variable polarization angles. The origin of this polarimetric behaviour can be interpreted as the combination of two different aspherical structures, namely an aspherical interaction of the SN ejecta with circumstellar matter (CSM) and an inherently aspherical explosion. Aspherical explosions are a common feature of slowly declining Type II (Type IIP) SNe. By contrast, SN 2017ahn showed low polarization not only in the photospheric phase but also in the radioactive tail phase. This low polarization in the tail phase, which has never before been observed in other Type IIP/L SNe, suggests that the explosion of SN 2017ahn was nearly spherical. These observations imply that Type IIL SNe have, at least, two different origins: they result from stars that have different explosion properties and/or different mass-loss processes. This fact might indicate that 13ej-like Type IIL SNe originate from a similar progenitor to those of Type IIP SNe accompanied by an aspherical CSM interaction, while 17ahn-like Type IIL SNe come from a more massive progenitor with less hydrogen in its envelope. 
    more » « less

    The observed diversity in Type Ia supernovae (SNe Ia) – the thermonuclear explosions of carbon–oxygen white dwarf stars used as cosmological standard candles – is currently met with a variety of explosion models and progenitor scenarios. To help improve our understanding of whether and how often different models contribute to the occurrence of SNe Ia and their assorted properties, we present a comprehensive analysis of seven nearby SNe Ia. We obtained one to two epochs of optical spectra with Gemini Observatory during the nebular phase (>200 d past peak) for each of these events, all of which had time series of photometry and spectroscopy at early times (the first ∼8 weeks after explosion). We use the combination of early- and late-time observations to assess the predictions of various models for the explosion (e.g. double-detonation, off-centre detonation, stellar collisions), progenitor star (e.g. ejecta mass, metallicity), and binary companion (e.g. another white dwarf or a non-degenerate star). Overall, we find general consistency in our observations with spherically symmetric models for SN Ia explosions, and with scenarios in which the binary companion is another degenerate star. We also present an in-depth analysis of SN 2017fzw, a member of the subgroup of SNe Ia which appear to be transitional between the subluminous ‘91bg-like’ events and normal SNe Ia, and for which nebular-phase spectra are rare.

    more » « less
  7. We present photometric and spectroscopic data on three extragalactic luminous red novae (LRNe): AT 2018bwo , AT 2021afy , and AT 2021blu . AT 2018bwo was discovered in NGC 45 (at about 6.8 Mpc) a few weeks after the outburst onset. During the monitoring period, the transient reached a peak luminosity of 10 40 erg s −1 . AT 2021afy , hosted by UGC 10043 (∼49.2 Mpc), showed a double-peaked light curve, with the two peaks reaching a similar luminosity of 2.1(±0.6)×10 41 erg s −1 . Finally, for AT 2021blu in UGC 5829 (∼8.6 Mpc), the pre-outburst phase was well-monitored by several photometric surveys, and the object showed a slow luminosity rise before the outburst. The light curve of AT 2021blu was sampled with an unprecedented cadence until the object disappeared behind the Sun, and it was then recovered at late phases. The light curve of LRN AT 2021blu shows a double peak, with a prominent early maximum reaching a luminosity of 6.5 × 10 40 erg s −1 , which is half of that of AT 2021afy . The spectra of AT 2021afy and AT 2021blu display the expected evolution for LRNe: a blue continuum dominated by prominent Balmer lines in emission during the first peak, and a redder continuum consistent with that of a K-type star with narrow absorption metal lines during the second, broad maximum. The spectra of AT 2018bwo are markedly different, with a very red continuum dominated by broad molecular features in absorption. As these spectra closely resemble those of LRNe after the second peak, AT 2018bwo was probably discovered at the very late evolutionary stages. This would explain its fast evolution and the spectral properties compatible with that of an M-type star. From the analysis of deep frames of the LRN sites years before the outburst, and considerations of the light curves, the quiescent progenitor systems of the three LRNe were likely massive, with primaries ranging from about 13 M ⊙ for AT 2018bwo , to 14 −1 +4 M ⊙ for AT 2021blu , and over 40 M ⊙ for AT 2021afy . 
    more » « less
    Free, publicly-accessible full text available March 1, 2024
  8. Abstract We present 75 near-infrared (NIR; 0.8−2.5 μ m) spectra of 34 stripped-envelope core-collapse supernovae (SESNe) obtained by the Carnegie Supernova Project-II (CSP-II), encompassing optical spectroscopic Types IIb, Ib, Ic, and Ic-BL. The spectra range in phase from pre-maximum to 80 days past maximum. This unique data set constitutes the largest NIR spectroscopic sample of SESNe to date. NIR spectroscopy provides observables with additional information that is not available in the optical. Specifically, the NIR contains the strong lines of He i and allows a more detailed look at whether Type Ic supernovae are completely stripped of their outer He layer. The NIR spectra of SESNe have broad similarities, but closer examination through statistical means reveals a strong dichotomy between NIR “He-rich” and “He-poor” SNe. These NIR subgroups correspond almost perfectly to the optical IIb/Ib and Ic/Ic-BL types, respectively. The largest difference between the two groups is observed in the 2 μ m region, near the He i λ 2.0581 μ m line. The division between the two groups is not an arbitrary one along a continuous sequence. Early spectra of He-rich SESNe show much stronger He i λ 2.0581 μ m absorption compared to the He-poor group, but with a wide range of profile shapes. The same line also provides evidence for trace amounts of He in half of our SNe in the He-poor group. 
    more » « less
  9. Abstract We present deep Chandra X-ray observations of two nearby Type Ia supernovae, SN 2017cbv and SN 2020nlb, which reveal no X-ray emission down to a luminosity L X ≲ 5.3 × 10 37 and ≲ 5.4 × 10 37 erg s −1 (0.3–10 keV), respectively, at ∼16–18 days after the explosion. With these limits, we constrain the pre-explosion mass-loss rate of the progenitor system to be M ̇ < 7.2 × 10 −9 and < 9.7 × 10 −9 M ⊙ yr −1 for each (at a wind velocity v w = 100 km s −1 and a radius of R ≈ 10 16 cm), assuming any X-ray emission would originate from inverse Compton emission from optical photons upscattered by the supernova shock. If the supernova environment was a constant-density medium, we would find a number density limit of n CSM < 36 and < 65 cm −3 , respectively. These X-ray limits rule out all plausible symbiotic progenitor systems, as well as large swathes of parameter space associated with the single degenerate scenario, such as mass loss at the outer Lagrange point and accretion winds. We also present late-time optical spectroscopy of SN 2020nlb, and set strong limits on any swept up hydrogen ( L H α < 2.7 × 10 37 erg s −1 ) and helium ( L He, λ 6678 < 2.7 × 10 37 erg s −1 ) from a nondegenerate companion, corresponding to M H ≲ 0.7–2 × 10 −3 M ⊙ and M He ≲ 4 × 10 −3 M ⊙ . Radio observations of SN 2020nlb at 14.6 days after explosion also yield a non-detection, ruling out most plausible symbiotic progenitor systems. While we have doubled the sample of normal Type Ia supernovae with deep X-ray limits, more observations are needed to sample the full range of luminosities and subtypes of these explosions, and set statistical constraints on their circumbinary environments. 
    more » « less