skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sandlin, Natalie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microbial enzymes can address diverse challenges such as degradation of toxins. However, if the function of interest does not confer a sufficient fitness effect on the producer, the enzymatic function cannot be improved in the host cells by a conventional selection scheme. To overcome this limitation, we propose an alternative scheme, termed ‘partner-assisted artificial selection’ (PAAS), wherein the population of enzyme producers is assisted by function-dependent feedback from an accessory population. Simulations investigating the efficiency of toxin degradation reveal that this strategy supports selection of improved degradation performance, which is robust to stochasticity in the model parameters. We observe that conventional considerations still apply in PAAS: more restrictive bottlenecks lead to stronger selection but add uncertainty. Overall, we offer a guideline for successful implementation of PAAS and highlight its potentials and limitations. 
    more » « less
  2. Zhou, Ning-Yi (Ed.)
    ABSTRACT Biological organisms carry a rich potential for removing toxins from our environment, but identifying suitable candidates and improving them remain challenging. We explore the use of computational tools to discover strains and enzymes that detoxify harmful compounds. In particular, we focus on mycotoxins—fungus-produced toxins that contaminate food and feed—and biological enzymes that are capable of rendering them less harmful. We discuss the use of established and novel computational tools to complement existing empirical data in three directions: discovering the prospect of detoxification among underexplored organisms, finding important cellular processes that contribute to detoxification, and improving the performance of detoxifying enzymes. We hope to create a synergistic conversation between researchers in computational biology and those in the bioremediation field. We showcase open bioremediation questions where computational researchers can contribute and highlight relevant existing and emerging computational tools that could benefit bioremediation researchers. 
    more » « less