Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In cleptoparasitic bees, host aggression and detection avoidance might be the main selective pressures shaping host-parasite interactions. However, the behavioral responses toward parasitism are unknown for most host species. In this study, we investigated the host-parasite interactions and behaviors of the cleptoparasitic beeTriepeolus remigatuswhen parasitizing the nests of its host, the squash beeXenoglossa(Peponapis)pruinosa. Using circle-tube behavioral assays and direct observations at a nest aggregation ofX. pruinosa, we assessed whether interactions between host and parasite were aggressive, tolerant, or avoidant and characterized the general parasitic behavior ofT. remigatus. Our results reveal a lack of aggression between host and cuckoo bees, with interactions primarily characterized by tolerant and avoidant behaviors. Squash bees displayed minimal aggression toward both conspecifics and parasites. Interestingly, despite the absence of aggressive responses,T. remigatuspreferred entering nests while the host was foraging, potentially indicating a strategy to avoid the discovery of parasitic visits. Furthermore, field observations provided insights into the parasitic behavior ofT. remigatus, revealing primarily rapid visits to host nests without extensive inspection. The limited aggression and short time for nest visits observed inT. remigatussuggest adaptations to optimize parasitic success while minimizing host detection. Overall, our findings contribute to a better understanding of the behavior of open-cell parasites and provide a first accounting of the squash bee behavior when encountering parasitic bees. Further research is needed to elucidate the mechanisms underlying host-parasite coevolution and response to parasitism in ground-nesting bees.more » « less
-
Lozier, Jeffrey (Ed.)Abstract Coloration is an important phenotypic trait for taxonomic studies and has been widely used for identifying insect species and populations. However, coloration can be a poor diagnostic character for insect species that exhibit high polymorphism in this trait, which can lead to over-splitting of taxonomic units. In orchid bees, color variation has been interpreted by different taxonomists as either polymorphism associated with Müllerian mimicry complexes or diagnostic traits for species identification. Despite this uncertainty, integrative approaches that incorporate multiple independent datasets to test the validity of hair coloration as a character that identifies independent evolutionary units have not been used. Here, we use phylogenomic data from Ultraconserved Elements (UCEs) to explore whether color phenotypes in the widespread orchid bee species complexes Eulaema meriana and Eulaema bombiformis (Hymenoptera: Apidae: Euglossini) correspond to independent lineages or polymorphic trait variation within species. We find that lineages within both species are structured according to geography and that color morphs are generally unassociated with evolutionarily independent groups except for populations located in the Atlantic Forest of Brazil. We conclude that there is compelling evidence that E. atleticana and E. niveofasciata are subspecies of E. meriana and E. bombiformis, respectively, and not different species as previously suggested. Therefore, we recognize Eulaema meriana atleticanacomb. n. and Eulaema bombiformis niveofasciatacomb. n. and discuss their morphological characteristics. We make recommendations on the use of color traits for orchid bee taxonomy and discuss the significance of subspecies as evolutionary units relevant for conservation efforts.more » « less
An official website of the United States government
