skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sandstrom, Karin M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Observations indicate dust populations vary between galaxies and within them, suggesting a complex life cycle and evolutionary history. Here we investigate the evolution of galactic dust populations across cosmic time using a suite of cosmological zoom-in simulations from the Feedback in Realistic Environments project, spanning $$M_{\rm vir}=10^{9-12}{M}_{\odot };\, M_{*}=10^{6-11}\, {M}_{\odot }$$. Our simulations incorporate a dust evolution model that accounts for the dominant sources of dust production, growth, and destruction and follows the evolution of specific dust species. All galactic dust populations in our suite exhibit similar evolutionary histories, with gas–dust accretion being the dominant producer of dust mass for all but the most metal-poor galaxies. Similar to previous works, we find the onset of efficient gas–dust accretion occurs above a ‘critical’ metallicity threshold (Zcrit). Due to this threshold, our simulations reproduce observed trends between galactic D/Z and metallicity and element depletion trends in the interstellar medium. However, we find Zcrit varies between dust species due to differences in key element abundances, dust physical properties, and life cycle processes resulting in $$Z_{\rm crit}\sim 0.05{\rm Z}_{\odot },\, 0.2{\rm Z}_{\odot },\, 0.5{\rm Z}_{\odot }$$ for metallic iron, silicates, and carbonaceous dust, respectively. These variations could explain the lack of small carbonaceous grains observed in the Magellanic Clouds. We also find a delay between the onset of gas–dust accretion and when a dust population reaches equilibrium, which we call the equilibrium time-scale (τequil). The relation between τequil and the metal enrichment time-scale of a galaxy, determined by its recent evolutionary history, can contribute to the scatter in the observed relation between galactic D/Z and metallicity. 
    more » « less
  2. Abstract We measure the CO-to-H2conversion factor (αCO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofαCOfor CO (2–1) and (1–0), respectively. The mean values forαCO (2–1)andαCO (1–0)are 9.3 5.4 + 4.6 and 4.2 2.0 + 1.9 M pc 2 ( K km s 1 ) 1 , respectively. The CO-intensity-weighted mean is 5.69 forαCO (2–1)and 3.33 forαCO (1–0). We examine howαCOscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength ( U ¯ ). Among them, U ¯ , ΣSFR, and the integrated CO intensity (WCO) have the strongest anticorrelation with spatially resolvedαCO. We provide linear regression results toαCOfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenαCOandWCO, metallicity, U ¯ , and ΣSFR. We also find thatαCOin each galaxy decreases with the stellar mass surface density (Σ) in high-surface-density regions (Σ≥ 100Mpc−2), following the power-law relations α CO ( 2 1 ) Σ 0.5 and α CO ( 1 0 ) Σ 0.2 . The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inαCOwith increasing Σas a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inαCO. The decrease inαCOat high Σis important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors. 
    more » « less
  3. ABSTRACT Young stellar objects (YSOs) are the gold standard for tracing star formation in galaxies but have been unobservable beyond the Milky Way and Magellanic Clouds. But that all changed when the JWST was launched, which we use to identify YSOs in the Local Group galaxy M33, marking the first time that individual YSOs have been identified at these large distances. We present Mid-Infrared Instrument (MIRI) imaging mosaics at 5.6 and 21 $$\mu$$m that cover a significant portion of one of M33’s spiral arms that has existing panchromatic imaging from the Hubble Space Telescope and deep Atacama Large Millimeter/submillimeter Array CO measurements. Using these MIRI and Hubble Space Telescope images, we identify point sources using the new dolphot MIRI module. We identify 793 candidate YSOs from cuts based on colour, proximity to giant molecular clouds (GMCs), and visual inspection. Similar to Milky Way GMCs, we find that higher mass GMCs contain more YSOs and YSO emission, which further show YSOs identify star formation better than most tracers that cannot capture this relationship at cloud scales. We find evidence of enhanced star formation efficiency in the southern spiral arm by comparing the YSOs to the molecular gas mass. 
    more » « less
  4. We present new JWST observations of the nearby, prototypical edge-on, spiral galaxy NGC 891. The northern half of the disk was observed with NIRCam in its F150W and F277W filters. Absorption is clearly visible in the mid-plane of the F150W image, along with vertical dusty plumes that closely resemble the ones seen in the optical. A ∼10 × 3 kpc2area of the lower circumgalactic medium (CGM) was mapped with MIRI F770W at 12 pc scales. Thanks to the sensitivity and resolution of JWST, we detect dust emission out to ∼4 kpc from the disk, in the form of filaments, arcs, and super-bubbles. Some of these filaments can be traced back to regions with recent star formation activity, suggesting that feedback-driven galactic winds play an important role in regulating baryonic cycling. The presence of dust at these altitudes raises questions about the transport mechanisms at play and suggests that small dust grains are able to survive for several tens of million years after having been ejected by galactic winds in the disk-halo interface. We lay out several scenarios that could explain this emission: dust grains may be shielded in the outer layers of cool dense clouds expelled from the galaxy disk, and/or the emission comes from the mixing layers around these cool clumps where material from the hot gas is able to cool down and mix with these cool cloudlets. This first set of data and upcoming spectroscopy will be very helpful to understand the survival of dust grains in energetic environments, and their contribution to recycling baryonic material in the mid-plane of galaxies. 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  5. Abstract We present NIRCam and NIRISS modules for DOLPHOT, a widely used crowded-field stellar photometry package. We describe details of the modules including pixel masking, astrometric alignment, star finding, photometry, catalog creation, and artificial star tests. We tested these modules using NIRCam and NIRISS images of M92 (a Milky Way globular cluster), Draco II (an ultrafaint dwarf galaxy), and Wolf–Lundmark–Mellote (a star-forming dwarf galaxy). DOLPHOT’s photometry is highly precise, and the color–magnitude diagrams are deeper and have better definition than anticipated during original program design in 2017. The primary systematic uncertainties in DOLPHOT’s photometry arise from mismatches in the model and observed point-spread functions (PSFs) and aperture corrections, each contributing ≲0.01 mag to the photometric error budget. Version 1.2 of WebbPSF models, which include charge diffusion and interpixel capacitance effects, significantly reduced PSF-related uncertainties. We also observed minor (≲0.05 mag) chip-to-chip variations in NIRCam’s zero-points, which will be addressed by the JWST flux calibration program. Globular cluster observations are crucial for photometric calibration. Temporal variations in the photometry are generally ≲0.01 mag, although rare large misalignment events can introduce errors up to 0.08 mag. We provide recommended DOLPHOT parameters, guidelines for photometric reduction, and advice for improved observing strategies. Our Early Release Science DOLPHOT data products are available on MAST, complemented by comprehensive online documentation and tutorials for using DOLPHOT with JWST imaging data. 
    more » « less
  6. ABSTRACT Recent strides have been made developing dust evolution models for galaxy formation simulations but these approaches vary in their assumptions and degree of complexity. Here, we introduce and compare two separate dust evolution models (labelled ‘Elemental’ and ‘Species’), based on recent approaches, incorporated into the gizmo code and coupled with fire-2 stellar feedback and interstellar medium physics. Both models account for turbulent dust diffusion, stellar production of dust, dust growth via gas-dust accretion, and dust destruction from time-resolved supernovae, thermal sputtering in hot gas, and astration. The ‘Elemental’ model tracks the evolution of generalized dust species and utilizes a simple, ‘tunable’ dust growth routine, while the ‘Species’ model tracks the evolution of specific dust species with set chemical compositions and incorporates a physically motivated, two-phase dust growth routine. We test and compare these models in an idealized Milky Way-mass galaxy and find that while both produce reasonable galaxy-integrated dust-to-metals (D/Z) ratios and predict gas-dust accretion as the main dust growth mechanism, a chemically motivated model is needed to reproduce the observed scaling relation between individual element depletions and D/Z with column density and local gas density. We also find the inclusion of theoretical metallic iron and O-bearing dust species are needed in the case of specific dust species in order to match observations of O and Fe depletions, and the integration of a sub-resolution dense molecular gas/CO scheme is needed to both match observed C depletions and ensure carbonaceous dust is not overproduced in dense environments. 
    more » « less
  7. null (Ed.)
  8. Abstract The CO-to-H 2 conversion factor ( α CO ) is central to measuring the amount and properties of molecular gas. It is known to vary with environmental conditions, and previous studies have revealed lower α CO in the centers of some barred galaxies on kiloparsec scales. To unveil the physical drivers of such variations, we obtained Atacama Large Millimeter/submillimeter Array bands (3), (6), and (7) observations toward the inner ∼2 kpc of NGC 3627 and NGC 4321 tracing 12 CO, 13 CO, and C 18 O lines on ∼100 pc scales. Our multiline modeling and Bayesian likelihood analysis of these data sets reveal variations of molecular gas density, temperature, optical depth, and velocity dispersion, which are among the key drivers of α CO . The central 300 pc nuclei in both galaxies show strong enhancement of temperature T k ≳ 100 K and density n H 2 > 10 3 cm −3 . Assuming a CO-to-H 2 abundance of 3 × 10 −4 , we derive 4–15 times lower α CO than the Galactic value across our maps, which agrees well with previous kiloparsec-scale measurements. Combining the results with our previous work on NGC 3351, we find a strong correlation of α CO with low- J 12 CO optical depths ( τ CO ), as well as an anticorrelation with T k . The τ CO correlation explains most of the α CO variation in the three galaxy centers, whereas changes in T k influence α CO to second order. Overall, the observed line width and 12 CO/ 13 CO 2–1 line ratio correlate with τ CO variation in these centers, and thus they are useful observational indicators for α CO variation. We also test current simulation-based α CO prescriptions and find a systematic overprediction, which likely originates from the mismatch of gas conditions between our data and the simulations. 
    more » « less
  9. Abstract Determining how the galactic environment, especially the high gas densities and complex dynamics in bar-fed galaxy centers, alters the star formation efficiency (SFE) of molecular gas is critical to understanding galaxy evolution. However, these same physical or dynamical effects also alter the emissivity properties of CO, leading to variations in the CO-to-H2conversion factor (αCO) that impact the assessment of the gas column densities and thus of the SFE. To address such issues, we investigate the dependence ofαCOon the local CO velocity dispersion at 150 pc scales using a new set of dust-basedαCOmeasurements and propose a newαCOprescription that accounts for CO emissivity variations across galaxies. Based on this prescription, we estimate the SFE in a sample of 65 galaxies from the PHANGS–Atacama Large Millimeter/submillimeter Array survey. We find increasing SFE toward high-surface-density regions like galaxy centers, while using a constant or metallicity-basedαCOresults in a more homogeneous SFE throughout the centers and disks. Our prescription further reveals a mean molecular gas depletion time of 700 Myr in the centers of barred galaxies, which is overall three to four times shorter than in nonbarred galaxy centers or the disks. Across the galaxy disks, the depletion time is consistently around 2–3 Gyr, regardless of the choice ofαCOprescription. All together, our results suggest that the high level of star formation activity in barred centers is not simply due to an increased amount of molecular gas, but also to an enhanced SFE compared to nonbarred centers or disk regions. 
    more » « less
  10. Abstract We present the JWST Resolved Stellar Populations Early Release Science (ERS) program. We obtained 27.5 hr of NIRCam and NIRISS imaging of three targets in the Local Group (Milky Way globular cluster M92, ultrafaint dwarf galaxy DracoII, and star-forming dwarf galaxy WLM), which span factors of ∼105in luminosity, ∼104in distance, and ∼105in surface brightness. We describe the survey strategy, scientific and technical goals, implementation details, present select NIRCam color–magnitude diagrams (CMDs), and validate the NIRCam exposure time calculator (ETC). Our CMDs are among the deepest in existence for each class of target. They touch the theoretical hydrogen-burning limit in M92 (<0.08M;MF090W∼ +13.6), include the lowest-mass stars observed outside the Milky Way in Draco II (0.09M;MF090W∼ +12.1), and reach ∼1.5 mag below the oldest main-sequence turnoff in WLM (MF090W∼ +4.6). The PARSEC stellar models provide a good qualitative match to the NIRCam CMDs, though they are ∼0.05 mag too blue compared to M92 F090W − F150W data. Our CMDs show detector-dependent color offsets ranging from ∼0.02 mag in F090W – F150W to ∼0.1 mag in F277W – F444W; these appear to be due to differences in the zero-point calibrations among the detectors. The NIRCam ETC (v2.0) matches the signal-to-noise ratios based on photon noise in uncrowded fields, but the ETC may not be accurate in more crowded fields, similar to what is known for the Hubble Space Telescope. We release the point-source photometry package DOLPHOT, optimized for NIRCam and NIRISS, for the community. 
    more » « less