skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sang, Ying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Different methods of measuring cavitation resistance in fern petioles lead to variable results, particularly with respect to the P50metric. We hypothesised that the fern dictyostele structure affects air entry into the xylem, and therefore impacts the shape of the vulnerability curve.Our study examined this variation by comparing vulnerability curves constructed on petioles collected from evergreen and deciduous ferns in the field, with curves generated using the standard centrifuge, air‐injection and bench‐top dehydration methods. Additional experiments complemented the vulnerability curves to better understand how anatomy shapes estimates of cavitation resistance.Centrifugation and radial air injection generated acceptable vulnerability curves for the deciduous species, but overestimated drought resistance in the two evergreen ferns. In these hardy plants, axial air injection and bench‐top dehydration produced results that most closely aligned with observations in nature. Additional experiments revealed that the dictyostele anatomy impedes air entry into the xylem during spinning and radial air injection.Each method produced acceptable vulnerability curves, depending on the species being tested. Therefore, we stress the importance of validating the curves within situmeasures of water potential and, if possible, hydraulic data to generate realistic results with any of the methods currently available. 
    more » « less