skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sant, Karilyn_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Zebrafish (Danio rerio) are a popular vertebrate model for high-throughput toxicity testing, serving as a model for embryonic development and disease etiology. However, standardized protocols using zebrafish tend to explore pathologies and behaviors at the organism level rather than at the organ-specific level. This study investigates the effects of chemical exposures on pancreatic function in whole-embryo zebrafish by integrating network analysis and machine learning, leveraging widely available datasets to probe an organ-specific effect. We compiled transcriptomics data for zebrafish exposed to 53 exposures from 25 unique chemicals, including halogenated organic compounds, pesticides/herbicides, endocrine-disrupting chemicals, pharmaceuticals, parabens, and solvents. All raw sequencing data were processed through a uniform bioinformatics pipeline for re-analysis and quality control, identifying differentially expressed genes and altered pathways related to pancreatic function and development. Clustering analysis revealed 5 distinct clusters of chemical exposures with similar impacts on pancreatic pathways, with gene co-expression network analysis identifying key driver genes within these clusters, providing insights into potential biomarkers of chemical-induced pancreatic toxicity. Machine learning was utilized to identify chemical properties that influence pancreatic pathway response, including average mass and biodegradation half-life. The random forest model achieved robust performance (4-fold cross-validation accuracy: 74%) over eXtreme Gradient Boosting, support vector machine, and multiclass logistic regression. This integrative approach enhances our understanding of the relationships between chemical properties and biological responses in a target organ, supporting the use of zebrafish whole embryos as a high-throughput vertebrate model. This computational workflow can be leveraged to investigate the complex effects of other exposures on organ-specific development. 
    more » « less