skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Santamaria, I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we consider a second-order detection problem where rank-p signals are structured by an unknown, but common, p-dimensional random vector and then received through unknown M by p matrices at each of two M-element arrays. The noises in each channel are independent with identical variances. We derive generalized likelihood ratio (GLR) tests for this problem when the noise variance is either known or unknown. The resulting detection problems may be phrased as two-channel factor analysis problems. 
    more » « less
  2. Abstract—Given a collection of M experimentally measured subspaces, and a model-based subspace, this paper addresses the problem of finding a subspace that approximates the collection, under the constraint that it intersects the model-based subspace in a predetermined number of dimensions. This constrained subspace estimation (CSE) problem arises in applications such as beamforming, where the model-based subspace encodes prior information about the direction-of-arrival of some sources impinging on the array. In this paper, we formulate the constrained subspace estimation (CSE) problem, and present an approximation based on a semidefinite relaxation (SDR) of this non-convex problem. The performance of the proposed CSE algorithm is demonstrated via numerical simulation, and its application to beamforming is also discussed. 
    more » « less
  3. Given a collection of M experimentally measured subspaces, and a model-based subspace, this paper addresses the problem of finding a subspace that approximates the collection, under the constraint that it intersects the model-based subspace in a predetermined number of dimensions. This constrained subspace estimation (CSE) problem arises in applications such as beamforming, where the model-based subspace encodes prior information about the direction-of-arrival of some sources impinging on the array. In this paper, we formulate the constrained subspace estimation (CSE) problem, and present an approximation based on a semidefinite relaxation (SDR) of this non-convex problem. The performance of the proposed CSE algorithm is demonstrated via numerical simulation, and its application to beamforming is also discussed. 
    more » « less