skip to main content

Search for: All records

Creators/Authors contains: "Santiago, Louis S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As climate change exacerbates drought stress in many parts of the world, understanding plant physiological mechanisms for drought survival is critical to predicting ecosystem responses. Stem net photosynthesis, which is common in arid environments, may be a drought survival trait, but whether the additional carbon fixed by stems contributes to plant hydraulic function and drought survival in arid land plants is untested. We conducted a stem light exclusion experiment on saplings of a widespread North American desert tree species, Parkinsonia florida, and after shading acclimation, we then subjected half of the plants to a drought treatment to test the interaction between light exclusion and water limitation on growth, leaf and stem photosynthetic gas exchange, xylem embolism assessed with micro-CT and gravimetric techniques, and survival. Growth, stem photosynthetic gas exchange, hydraulic function, and survival all showed expected reductions in response to light exclusion. However, stem photosynthesis mitigated the drought-induced reductions in gas exchange, xylem embolism (percent loss of conductivity, PLC), and mortality. The highest mortality was in the combined light exclusion and drought treatment, and was related to stem PLC and native stem-specific hydraulic conductivity. This research highlights the integration of carbon economy and water transport. Our results show that additional carbon income by photosynthetic stems has an important role in the growth and survival of a widespread desert tree species during drought. This shift in function under conditions of increasing stress underscores the importance of considering stem photosynthesis for predicting drought-induced mortality not only for the additional supply of carbon, but its extended benefits for hydraulic function.

    more » « less
  2. Introduction In dryland systems, biological soil crusts (biocrusts) can occupy large areas of plant interspaces, where they fix carbon following rain. Although distinct biocrust types contain different dominant photoautotrophs, few studies to date have documented carbon exchange over time from various biocrust types. This is especially true for gypsum soils. Our objective was to assess the carbon exchange of biocrust types established at the world’s largest gypsum dune field at White Sands National Park. Methods We sampled five different biocrust types from a sand sheet location in three different years and seasons (summer 2020, fall 2021, and winter 2022) for carbon exchange measurements in controlled lab conditions. Biocrusts were rehydrated to full saturation and light incubated for 30 min, 2, 6, 12, 24, and 36 h. Samples were then subject to a 12-point light regime with a LI-6400XT photosynthesis system to determine carbon exchange. Results Biocrust carbon exchange values differed by biocrust type, by incubation time since wetting, and by date of field sampling. Lichens and mosses had higher gross and net carbon fixation rates than dark and light cyanobacterial crusts. High respiration rates were found after 0.5 h and 2 h incubation times as communities recovered from desiccation, leveling off after 6 h incubation. Net carbon fixation of all types increased with longer incubation time, primarily as a result of decreasing respiration, which suggests rapid recovery of biocrust photosynthesis across types. However, net carbon fixation rates varied from year to year, likely as a product of time since the last rain event and environmental conditions preceding collection, with moss crusts being most sensitive to environmental stress at our study sites. Discussion Given the complexity of patterns discovered in our study, it is especially important to consider a multitude of factors when comparing biocrust carbon exchange rates across studies. Understanding the dynamics of biocrust carbon fixation in distinct crust types will enable greater precision of carbon cycling models and improved forecasting of impacts of global climate change on dryland carbon cycling and ecosystem functioning. 
    more » « less
  3. Urbanization creates novel ecosystems comprised of species assemblages and environments with no natural analogue. Moreover, irrigation can alter plant function compared to non-irrigated systems. However, the capacity of irrigation to alter functional trait patterns across multiple species is unknown but may be important for the dynamics of urban ecosystems. We evaluated the hypothesis that urban irrigation influences plasticity in functional traits by measuring carbon-gain and water-use traits of 30 tree species planted in Southern California, USA spanning a coastal-to-desert gradient. Tree species respond to irrigation through increasing the carbon-gain trait relationship of leaf nitrogen per specific leaf area compared to their native habitat. Moreover, most species shift to a water-use strategy of greater water loss through stomata when planted in irrigated desert-like environments compared to coastal environments, implying that irrigated species capitalize on increased water availability to cool their leaves in extreme heat and high evaporative demand conditions. Therefore, irrigated urban environments increase the plasticity of trait responses compared to native ecosystems, allowing for novel response to climatic variation. Our results indicate that trees grown in water-resource-rich urban ecosystems can alter their functional traits plasticity beyond those measured in native ecosystems, which can lead to plant trait dynamics with no natural analogue. 
    more » « less
  4. Abstract

    Isohydry (maintenance of plant water potential at the cost of carbon gain) and anisohydry (gas exchange maintenance at the cost of declining plant water status) make up two ends of a stomatal drought response strategy continuum. However, few studies have merged measures of stomatal regulation with xylem hydraulic safety strategies based on in situ field measurements. The goal of this study was to characterize the stomatal and xylem hydraulic safety strategies of woody species in the biodiverse Mediterranean‐type ecosystem region of California. Measurements were conducted in situ when California was experiencing the most severe drought conditions in the past 1,200 years. We found coordination among stomatal, hydraulic, and standard leaf functional traits. For example, stem xylem vulnerability to cavitation (P50) was correlated with the water potential at stomatal closure (Pclose); more resistant species had a more negative water potential at stomatal closure. The degree of isohydry–anisohydry, defined at Pclose–P50, was correlated with the hydraulic safety margin across species; more isohydric species had a larger hydraulic safety margin. In addition, we report for the first time Pclosevalues below −10 MPa. Measuring these traits in a biodiverse region under exceptional drought conditions contributes to our understanding of plant drought responses.

    more » « less
  5. Abstract

    Despite their low contribution to forest carbon stocks, lianas (woody vines) play an important role in the carbon dynamics of tropical forests. As structural parasites, they hinder tree survival, growth and fecundity; hence, they negatively impact net ecosystem productivity and long‐term carbon sequestration.

    Competition (for water and light) drives various forest processes and depends on the local abundance of resources over time. However, evaluating the relative role of resource availability on the interactions between lianas and trees from empirical observations is particularly challenging. Previous approaches have used labour‐intensive and ecosystem‐scale manipulation experiments, which are infeasible in most situations.

    We propose to circumvent this challenge by evaluating the uncertainty of water and light capture processes of a process‐based vegetation model (ED2) including the liana growth form. We further developed the liana plant functional type in ED2 to mechanistically simulate water uptake and transport from roots to leaves, and start the model from prescribed initial conditions. We then used the PEcAn bioinformatics platform to constrain liana parameters and run uncertainty analyses.

    Baseline runs successfully reproduced ecosystem gas exchange fluxes (gross primary productivity and latent heat) and forest structural features (leaf area index, aboveground biomass) in two sites (Barro Colorado Island, Panama and Paracou, French Guiana) characterized by different rainfall regimes and levels of liana abundance.

    Model uncertainty analyses revealed that water limitation was the factor driving the competition between trees and lianas at the drier site (BCI), and during the relatively short dry season of the wetter site (Paracou). In young patches, light competition dominated in Paracou but alternated with water competition between the wet and the dry season on BCI according to the model simulations.

    The modelling workflow also identified key liana traits (photosynthetic quantum efficiency, stomatal regulation parameters, allometric relationships) and processes (water use, respiration, climbing) driving the model uncertainty. They should be considered as priorities for future data acquisition and model development to improve predictions of the carbon dynamics of liana‐infested forests.

    Synthesis. Competition for water plays a larger role in the interaction between lianas and trees than previously hypothesized, as demonstrated by simulations from a process‐based vegetation model.

    more » « less
  6. Abstract

    Current models used for predicting vegetation responses to climate change are often guided by the dichotomous needs to resolve either (i) internal plant water status as a proxy for physiological vulnerability or (ii) external water and carbon fluxes and atmospheric feedbacks. Yet, accurate representation of fluxes does not always equate to accurate predictions of vulnerability. We resolve this discrepancy using a hydrodynamic framework that simultaneously tracks plant water status and water uptake. We couple a minimalist plant hydraulics model with a soil moisture model and, for the first time, translate rainfall variability at multiple timescales – with explicit descriptions at daily, seasonal, and interannual timescales – into a physiologically meaningful metric for the risk of hydraulic failure. The model, parameterized with measured traits from chaparral species native to Southern California, shows that apparently similar transpiration patterns throughout the dry season can emerge from disparate plant water potential trajectories, and vice versa. The parsimonious set of parameters that captures the role of many traits across the soil–plant–atmosphere continuum is then used to establish differences in species sensitivities to shifts in seasonal rainfall statistics, showing that co‐occurring species may diverge in their risk of hydraulic failure despite minimal changes to their seasonal water use. The results suggest potential shifts in species composition in this region due to species‐specific changes in hydraulic risk. Our process‐based approach offers a quantitative framework for understanding species sensitivity across multiple timescales of rainfall variability and provides a promising avenue toward incorporating interactions of temporal variability and physiological mechanisms into drought response models.

    more » « less