skip to main content


Search for: All records

Creators/Authors contains: "Sanyal, Arnab"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The high computational complexity associated with training deep neural networks limits online and real-time training on edge devices. This paper proposed an end-to-end training and inference scheme that eliminates multiplications by approximate operations in the log-domain which has the potential to significantly reduce implementation complexity. We implement the entire training procedure in the log-domain, with fixed-point data representations. This training procedure is inspired by hardware-friendly approximations of log-domain addition which are based on look-up tables and bit-shifts. We show that our 16-bit log-based training can achieve classification accuracy within approximately 1% of the equivalent floating-point baselines for a number of commonly used datasets. 
    more » « less