skip to main content

Search for: All records

Creators/Authors contains: "Sapkota, Amy R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2023
  2. Villanueva, Laura (Ed.)
    ABSTRACT Phylogenetic distribution and extended spectrum β-lactamase (ESBL) activity of Escherichia coli recovered from surface and reclaimed water in the mid-Atlantic U.S. were evaluated. Among 488 isolates, phylogroups B1 and A were the most and least prevalent, respectively. Water type, but not season, affected phylogroup distribution. The likelihood of detecting group A isolates was higher in reclaimed than pond ( P <  0.01), freshwater river ( P <  0.01) or brackish river (P <  0.05) water. Homogeneity in group distribution was lowest in pond water, where group B1 comprised 50% of isolates. Only 16 (3.3%) isolates exhibited phenotypic resistance to one or more cephalosporins tested and only four had ESBL activity, representing groups B1, B2 isolates, and D. Phylogroup was a factor in antimicrobial resistance ( P <  0.05), with group A (8.7%) and D (1.6%) exhibiting the highest and lowest rates. Resistance to cefoxitin was the most prevalent. Multi- versus single drug resistance was affected by phylogroup ( P <  0.05) and more likely in groups D and B1 than A which carried resistance to cefoxitin only. The most detected β-lactam resistance genes were bla CMY-2 and bla TEM . Water type was a factor for bla CTX-M gene detection ( P <  0.05). Phenotypicmore »resistance to cefotaxime, ceftriaxone, cefuroxime and ceftazidime, and genetic determinants for ESBL-mediated resistance were found predominantly in B2 and D isolates from rivers and reclaimed water. Overall, ESBL activity and cephalosporin resistance in reclaimed and surface water isolates were low. Integrating data on ESBL activity and β-lactam resistance among E. coli populations can inform decisions on safety of irrigation water sources and One Health. IMPORTANCE Extended spectrum β-lactamase (ESBL) producing bacteria, that are resistant to a broad range of antimicrobial agents, are spreading in the environment but data remain scarce. ESBL-producing Escherichia coli infections in the community are on the rise. This work was conducted to assess presence of ESBL-producing E. coli in water that could be used for irrigation of fresh produce. The study provides the most extensive evaluation of ESBL-producing E. coli in surface and reclaimed water in the mid-Atlantic United States. The prevalence of ESBL producers was low and phenotypic resistance to cephalosporins (types of β-lactam antibiotics) was affected by season but not water type. Data on antimicrobial resistance among E. coli populations in water can inform decisions on safety of irrigation water sources and One Health.« less
    Free, publicly-accessible full text available August 9, 2023
  3. Free, publicly-accessible full text available August 1, 2023
  4. Free, publicly-accessible full text available April 1, 2023
  5. Abstract

    Nontraditional irrigation water sources (e.g., recycled water, brackish water) may harbor human pathogens, includingVibriospp., that could be present in a viable-but-nonculturable (VBNC) state, stymieing current culture-based detection methods. To overcome this challenge, we coupled 5-bromo-2′-deoxyuridine (BrdU) labeling, enrichment techniques, and 16S rRNA sequencing to identify metabolically-activeVibriospp.in nontraditional irrigation water (recycled water, pond water, non-tidal freshwater, and tidal brackish water). Our coupled BrdU-labeling and sequencing approach revealed the presence of metabolically-activeVibriospp. at all sampling sites. Whereas, the culture-based method only detected vibrios at three of the four sites. We observed the presence ofV. cholerae,V. vulnificus, andV. parahaemolyticususing both methods, whileV. aesturianusandV. shiloniiwere detected only through our labeling/sequencing approach. Multiple other pathogens of concern to human health were also identified through our labeling/sequencing approach includingP. shigelloides,B. cereusandE. cloacae. Most importantly, 16S rRNA sequencing of BrdU-labeled samples resulted inVibriospp. detection even when our culture-based methods resulted in negative detection. This suggests that our novel approach can effectively detect metabolically-activeVibriospp. that may have been present in a VBNC state, refining our understanding of the prevalence of vibrios in nontraditional irrigation waters.

  6. Abstract Background

    Infections with nontyphoidalSalmonellacause an estimated 19,336 hospitalizations each year in the United States. Sources of infection can vary by state and include animal and plant-based foods, as well as environmental reservoirs. Several studies have recognized the importance of increased ambient temperature and precipitation in the spread and persistence ofSalmonellain soil and food. However, the impact of extreme weather events onSalmonellainfection rates among the most prevalent serovars, has not been fully evaluated across distinct U.S. regions.

    Methods

    To address this knowledge gap, we obtainedSalmonellacase data forS.Enteriditis,S.Typhimurium,S.Newport, andS.Javiana (2004-2014; n = 32,951) from the Foodborne Diseases Active Surveillance Network (FoodNet), and weather data from the National Climatic Data Center (1960-2014). Extreme heat and precipitation events for the study period (2004-2014) were identified using location and calendar day specific 95thpercentile thresholds derived using a 30-year baseline (1960-1989). Negative binomial generalized estimating equations were used to evaluate the association between exposure to extreme events and salmonellosis rates.

    Results

    We observed that extreme heat exposure was associated with increased rates of infection withS.Newport in Maryland (Incidence Rate Ratio (IRR): 1.07, 95% Confidence Interval (CI): 1.01, 1.14), and Tennessee (IRR: 1.06, 95% CI: 1.04, 1.09), both FoodNet sites with high densities of animal feeding operations (e.g., broilermore »chickens and cattle). Extreme precipitation events were also associated with increased rates ofS.Javiana infections, by 22% in Connecticut (IRR: 1.22, 95% CI: 1.10, 1.35) and by 5% in Georgia (IRR: 1.05, 95% CI: 1.01, 1.08), respectively. In addition, there was an 11% (IRR: 1.11, 95% CI: 1.04-1.18) increased rate ofS. Newport infections in Maryland associated with extreme precipitation events.

    Conclusions

    Overall, our study suggests a stronger association between extreme precipitation events, compared to extreme heat, and salmonellosis across multiple U.S. regions. In addition, the rates of infection withSalmonellaserovars that persist in environmental or plant-based reservoirs, such asS.Javiana andS.Newport, appear to be of particular significance regarding increased heat and rainfall events.

    « less
  7. Crop yield depends on multiple factors, including climate conditions, soil characteristics, and available water. The objective of this study was to evaluate the impact of projected temperature and precipitation changes on crop yields in the Monocacy River Watershed in the Mid-Atlantic United States based on climate change scenarios. The Soil and Water Assessment Tool (SWAT) was applied to simulate watershed hydrology and crop yield. To evaluate the effect of future climate projections, four global climate models (GCMs) and three representative concentration pathways (RCP 4.5, 6, and 8.5) were used in the SWAT model. According to all GCMs and RCPs, a warmer climate with a wetter Autumn and Spring and a drier late Summer season is anticipated by mid and late century in this region. To evaluate future management strategies, water budget and crop yields were assessed for two scenarios: current rainfed and adaptive irrigated conditions. Irrigation would improve corn yields during mid-century across all scenarios. However, prolonged irrigation would have a negative impact due to nutrients runoff on both corn and soybean yields compared to rainfed condition. Decision tree analysis indicated that corn and soybean yields are most influenced by soil moisture, temperature, and precipitation as well as the watermore »management practice used (i.e., rainfed or irrigated). The computed values from the SWAT modeling can be used as guidelines for water resource managers in this watershed to plan for projected water shortages and manage crop yields based on projected climate change conditions.« less
  8. Gralnick, Jeffrey A. (Ed.)
    ABSTRACT Irrigation water sources have been shown to harbor foodborne pathogens and could contribute to the outbreak of foodborne illness related to consumption of contaminated produce. Determining the probability of and the degree to which these irrigation water sources contain these pathogens is paramount. The purpose of this study was to determine the prevalence of Salmonella enterica and Listeria monocytogenes in alternative irrigation water sources. Water samples ( n  = 188) were collected over 2 years (2016 to 2018) from 2 reclaimed water plants, 3 nontidal freshwater rivers, and 1 tidal brackish river on Maryland’s Eastern Shore (ESM). Samples were collected by filtration using modified Moore swabs (MMS) and analyzed by culture methods. Pathogen levels were quantified using a modified most probable number (MPN) procedure with three different volumes (10 liters, 1 liter, and 0.1 liter). Overall, 65% (122/188) and 40% (76/188) of water samples were positive for S. enterica and L. monocytogenes , respectively. For both pathogens, MPN values ranged from 0.015 to 11 MPN/liter. Pathogen levels (MPN/liter) were significantly ( P <  0.05) greater for the nontidal freshwater river sites and the tidal brackish river site than the reclaimed water sites. L. monocytogenes levels in water varied based on season.more »Detection of S. enterica was more likely with 10-liter filtration compared to 0.1-liter filtration. The physicochemical factors measured attributed only 6.4% of the constrained variance to the levels of both pathogens. This study shows clear variations in S. enterica and L. monocytogenes levels in irrigation water sources on ESM. IMPORTANCE In the last several decades, Maryland’s Eastern Shore has seen significant declines in groundwater levels. While this area is not currently experiencing drought conditions or water scarcity, this research represents a proactive approach. Efforts, to investigate the levels of pathogenic bacteria and the microbial quality of alternative irrigation water are important for sustainable irrigation practices into the future. This research will be used to determine the suitability of alternative irrigation water sources for use in fresh produce irrigation to conserve groundwater.« less