skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Saprykina, Maria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present examples of nearly integrable analytic Hamiltonian systems with several strong diffusion properties: topological weak mixing and diffusion at all times. These examples are obtained by AbC constructions with several frequencies. 
    more » « less
  2. Abstract Consider an analytic Hamiltonian system near its analytic invariant torus $\mathcal T_0$ carrying zero frequency. We assume that the Birkhoff normal form of the Hamiltonian at $\mathcal T_0$ is convergent and has a particular form: it is an analytic function of its non-degenerate quadratic part. We prove that in this case there is an analytic canonical transformation—not just a formal power series—bringing the Hamiltonian into its Birkhoff normal form. 
    more » « less
  3. Any \begin{document}$ C^d $\end{document} conservative map \begin{document}$ f $\end{document} of the \begin{document}$ d $\end{document}-dimensional unit ball \begin{document}$ {\mathbb B}^d $\end{document}, \begin{document}$ d\geq 2 $\end{document}, can be realized by renormalized iteration of a \begin{document}$ C^d $\end{document} perturbation of identity: there exists a conservative diffeomorphism of \begin{document}$ {\mathbb B}^d $\end{document}, arbitrarily close to identity in the \begin{document}$ C^d $\end{document} topology, that has a periodic disc on which the return dynamics after a \begin{document}$ C^d $\end{document} change of coordinates is exactly \begin{document}$ f $\end{document}.

     
    more » « less