- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
00000040000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Fayad, Bassam (2)
-
SAPRYKINA, MARIA (2)
-
Saprykina, Maria (2)
-
DE LA LLAVE, RAFAEL (1)
-
Dolgopyat, Dmitry (1)
-
FAYAD, BASSAM (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
DE LA LLAVE, RAFAEL ; SAPRYKINA, MARIA ( , Ergodic Theory and Dynamical Systems)Abstract Consider an analytic Hamiltonian system near its analytic invariant torus $\mathcal T_0$ carrying zero frequency. We assume that the Birkhoff normal form of the Hamiltonian at $\mathcal T_0$ is convergent and has a particular form: it is an analytic function of its non-degenerate quadratic part. We prove that in this case there is an analytic canonical transformation—not just a formal power series—bringing the Hamiltonian into its Birkhoff normal form.more » « less
-
Fayad, Bassam ; Saprykina, Maria ( , Discrete & Continuous Dynamical Systems)
Any
conservative map\begin{document}$ C^d $\end{document} of the\begin{document}$ f $\end{document} -dimensional unit ball\begin{document}$ d $\end{document} ,\begin{document}$ {\mathbb B}^d $\end{document} , can be realized by renormalized iteration of a\begin{document}$ d\geq 2 $\end{document} perturbation of identity: there exists a conservative diffeomorphism of\begin{document}$ C^d $\end{document} , arbitrarily close to identity in the\begin{document}$ {\mathbb B}^d $\end{document} topology, that has a periodic disc on which the return dynamics after a\begin{document}$ C^d $\end{document} change of coordinates is exactly\begin{document}$ C^d $\end{document} .\begin{document}$ f $\end{document} -
Dolgopyat, Dmitry ; Fayad, Bassam ; Saprykina, Maria ( , Electronic Journal of Probability)