skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Sarabi, M. Ebrahim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The presence of second-order smoothness for objective functions of optimization problems can provide valuable information about their stability properties and help us design efficient numerical algorithms for solving these problems. Such second-order information, however, cannot be expected in various constrained and composite optimization problems since we often have to express their objective functions in terms of extended-real-valued functions for which the classical second derivative may not exist. One powerful geometrical tool to use for dealing with such functions is the concept of twice epi-differentiability. In this paper, we study a stronger version of this concept, called strict twice epi-differentiability. We characterize this concept for certain composite functions and use it to establish the equivalence of metric regularity and strong metric regularity for a class of generalized equations at their nondegenerate solutions. Finally, we present a characterization of continuous differentiability of the proximal mapping of our composite functions. 
    more » « less
  2. The paper is devoted to a comprehensive study of composite models in variational analysis and optimization the importance of which for numerous theoretical, algorithmic, and applied issues of operations research is difficult to overstate. The underlying theme of our study is a systematical replacement of conventional metric regularity and related requirements by much weaker metric subregulatity ones that lead us to significantly stronger and completely new results of first-order and second-order variational analysis and optimization. In this way, we develop extended calculus rules for first-order and second-order generalized differential constructions while paying the main attention in second-order variational theory to the new and rather large class of fully subamenable compositions. Applications to optimization include deriving enhanced no-gap second-order optimality conditions in constrained composite models, complete characterizations of the uniqueness of Lagrange multipliers, strong metric subregularity of Karush-Kuhn-Tucker systems in parametric optimization, and so on. 
    more » « less