- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
00000030000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Sarabipour, Sarvenaz (3)
-
Bisson Filho, Alexandre W. (1)
-
Burgess, Steven J. (1)
-
Byrne, Patrick O (1)
-
Clark, Kelly (1)
-
Cole, Philip A (1)
-
Connacher, Mary Katherine (1)
-
Hristova, Kalina (1)
-
Ibrahim, Ahmed (1)
-
Kavran, Jennifer M (1)
-
Leahy, Daniel J (1)
-
Macklin, Paul (1)
-
McCabe, Jacqueline M (1)
-
Niemi, Natalie M (1)
-
Niemi, Natalie M. (1)
-
Ramek, Alexander (1)
-
Shan, Yibing (1)
-
Shaw, David E (1)
-
Smith, Christopher T. (1)
-
Wang, Zhihong (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 6, 2025
-
Sarabipour, Sarvenaz ; Niemi, Natalie M. ; Burgess, Steven J. ; Smith, Christopher T. ; Bisson Filho, Alexandre W. ; Ibrahim, Ahmed ; Clark, Kelly ( , Proceedings of the Royal Society B: Biological Sciences)
Faculty at research institutions play a central role in advancing knowledge and careers, as well as promoting the well-being of students and colleagues in research environments. Mentorship from experienced peers has been touted as critical for enabling these myriad roles to allow faculty development, career progression, and satisfaction. However, there is little information available on who supports faculty and best ways to structure a faculty mentorship programme for early- and mid-career academics. In the interest of advocating for increased and enhanced faculty mentoring and mentoring programmes, we surveyed faculty around the world to gather data on whether and how they receive mentoring. We received responses from 457 early- and mid-career faculty and found that a substantial portion of respondents either reported having no mentor or a lack of a formal mentoring scheme. Qualitative responses on the quality of mentorship revealed that the most common complaints regarding mentorship included lack of mentor availability, unsatisfactory commitment to mentorship, and non-specific or non-actionable advice. On these suggestions, we identify a need for training for faculty mentors as well as strategies for individual mentors, departments, and institutions for funding and design of more intentional and supportive mentorship programmes for early- and mid-career faculty.
Free, publicly-accessible full text available December 20, 2024 -
Kavran, Jennifer M ; McCabe, Jacqueline M ; Byrne, Patrick O ; Connacher, Mary Katherine ; Wang, Zhihong ; Ramek, Alexander ; Sarabipour, Sarvenaz ; Shan, Yibing ; Shaw, David E ; Hristova, Kalina ; et al ( , eLife)
The type I insulin-like growth factor receptor (IGF1R) is involved in growth and survival of normal and neoplastic cells. A ligand-dependent conformational change is thought to regulate IGF1R activity, but the nature of this change is unclear. We point out an underappreciated dimer in the crystal structure of the related Insulin Receptor (IR) with Insulin bound that allows direct comparison with unliganded IR and suggests a mechanism by which ligand regulates IR/IGF1R activity. We test this mechanism in a series of biochemical and biophysical assays and find the IGF1R ectodomain maintains an autoinhibited state in which the TMs are held apart. Ligand binding releases this constraint, allowing TM association and unleashing an intrinsic propensity of the intracellular regions to autophosphorylate. Enzymatic studies of full-length and kinase-containing fragments show phosphorylated IGF1R is fully active independent of ligand and the extracellular-TM regions. The key step triggered by ligand binding is thus autophosphorylation.