skip to main content


Search for: All records

Creators/Authors contains: "Saravanan, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The prediction of tropical rain rates from atmospheric profiles poses significant challenges, mainly due to the heavy-tailed distribution exhibited by tropical rainfall. This study introduces overparameterized neural networks not only to forecast tropical rain rates but also to explain their heavy-tailed distribution. The investigation is separately conducted for three rain types (stratiform, deep convective, and shallow convective) observed by the Global Precipitation Measurement satellite radar over the west and east Pacific regions. Atmospheric profiles of humidity, temperature, and zonal and meridional winds from the MERRA-2 reanalysis are considered as features. Although overparameterized neural networks are well known for their “double descent phenomenon,” little has been explored about their applicability to climate data and capability of capturing the tail behavior of data. In our results, overparameterized neural networks accurately estimate the rain-rate distributions and outperform other machine learning methods. Spatial maps show that overparameterized neural networks also successfully describe the spatial patterns of each rain type across the tropical Pacific. In addition, we assess the feature importance for each overparameterized neural network to provide insight into the key factors driving the predictions, with low-level humidity and temperature variables being the overall most important. These findings highlight the capability of overparameterized neural networks in predicting the distribution of the rain rate and explaining extreme values.

    Significance Statement

    This study aims to introduce the capability of overparameterized neural networks, a type of neural network with more parameters than data points, in predicting the distribution of tropical rain rates from gridscale environmental variables and explaining their tail behavior. Rainfall prediction has been a topic of importance, yet it remains a challenging problem for its heavy-tailed nature. Overparameterized neural networks correctly captured rain-rate distributions and the spatial patterns and heterogeneity of the observed rain rates for multiple rain types, which could not be achieved by any other previous statistical or machine learning frameworks. We find that overparameterized neural networks can play a key role in general prediction tasks, with potential expanded applicability to other domains with heavy-tailed data distribution.

     
    more » « less
  2. Abstract

    A liquid‐phase polymer‐to‐ceramic approach is reported for the synthesis of hafnium carbide (HfC)/hafnium oxide (HfO2) composite particles from a commercial precursor. Typically, HfC ceramics have been obtained by sintering of fine powders, which usually results in large particle size and high porosity during densification. In this study a single‐source liquid precursor was first cured at low temperature and then pyrolyzed at varying conditions to achieve HfC ceramics. The chemical structure of the liquid and cured precursors, and the resulting HfC ceramics was studied using various analytical techniques. The nuclear magnetic resonance and Fourier transform infrared spectroscopy indicated the presence of partially hydrated hafnium oxychloride (Hf–O–Cl·nH2O) in the precursor. Scanning electron microscopy of the resulting HfC crystals showed a size distribution in the range of approx. 600–700 nm. The X‐ray diffraction of the pyrolyzed samples confirmed the formation of crystalline HfC along with monoclinic‐HfO2and free carbon phase. The formation of HfO2in the ceramics was significantly reduced by controlling the low‐temperature curing temperature. Pyrolysis at various temperatures showed that HfC formation occurred even at 1000°C. These results show that the reported precursor could be promising for the direct synthesis of ultrahigh temperature HfC ceramics and for precursor infiltration pyrolysis of reinforced ceramic matrix composites.

     
    more » « less
  3. Abstract

    Predicting rain from large-scale environmental variables remains a challenging problem for climate models and it is unclear how well numerical methods can predict the true characteristics of rainfall without smaller (storm) scale information. This study explores the ability of three statistical and machine learning methods to predict 3-hourly rain occurrence and intensity at 0.5° resolution over the tropical Pacific Ocean using rain observations the Global Precipitation Measurement (GPM) satellite radar and large-scale environmental profiles of temperature and moisture from the MERRA-2 reanalysis. We also separated the rain into different types (deep convective, stratiform, and shallow convective) because of their varying kinematic and thermodynamic structures that might respond to the large-scale environment in different ways. Our expectation was that the popular machine learning methods (i.e., the neural network and random forest) would outperform a standard statistical method (a generalized linear model) because of their more flexible structures, especially in predicting the highly skewed distribution of rain rates for each rain type. However, none of the methods obviously distinguish themselves from one another and each method still has issues with predicting rain too often and not fully capturing the high end of the rain rate distributions, both of which are common problems in climate models. One implication of this study is that machine learning tools must be carefully assessed and are not necessarily applicable to solving all big data problems. Another implication is that traditional climate model approaches are not sufficient to predict extreme rain events and that other avenues need to be pursued.

     
    more » « less
  4. Abstract

    The eastern North Pacific (ENP) has the highest density of tropical cyclones (TCs) on earth, and yet the controls on TCs, from individual events to seasonal totals, remain poorly understood. One effect that has not been fully considered is the unique geography of the Central American mountains. Although observational studies suggest these mountains can readily fuel individual TCs through dynamical processes, here we show that these mountains indeed play the opposite role on the seasonal timescale, hindering seasonal ENP TC activity by up to 35%. We found that these mountains significantly interrupt the abundant moisture transport from the Caribbean Sea to the ENP, limiting deep convection over the open ocean area where TCs preferentially occur. This study advances our fundamental understanding of ENP TC genesis mechanisms across the weather-to-climate timescales, and also highlights the importance of topography representation in improving the ENP regional climate simulations, as well as TC seasonal predictions and future projections.

     
    more » « less
  5. This study explores the feasibility of predicting subdaily variations and the climatological spatial patterns of rain in the tropical Pacific from atmospheric profiles using a set of generalized linear models: logistic regression for rain occurrence and gamma regression for rain amount. The prediction is separated into different rain types from TRMM satellite radar observations (stratiform, deep convective, and shallow convective) and CAM5 simulations (large-scale and convective). Environmental variables from MERRA-2 and CAM5 are used as predictors for TRMM and CAM5 rainfall, respectively. The statistical models are trained using environmental fields at 0000 UTC and rainfall from 0000 to 0600 UTC during 2003. The results are used to predict 2004 rain occurrence and rate for MERRA-2/TRMM and CAM5 separately. The first EOF profile of humidity and the second EOF profile of temperature contribute most to the prediction for both statistical models in each case. The logistic regression generally performs well for all rain types, but does better in the east Pacific compared to the west Pacific. The gamma regression produces reasonable geographical rain amount distributions but rain rate probability distributions are not predicted as well, suggesting the need for a different, higher-order model to predict rain rates. The results of this study suggest that statistical models applied to TRMM radar observations and MERRA-2 environmental parameters can predict the spatial patterns and amplitudes of tropical rainfall in the time-averaged sense. Comparing the observationally trained models to models that are trained using CAM5 simulations points to possible deficiencies in the convection parameterization used in CAM5.

     
    more » « less