Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2025
-
Abstract Rising anthropogenic carbon emissions have dire environmental consequences, necessitating remediative approaches, which includes use of solid sorbents. Here, aminopolymers (poly(ethylene imine) (PEI) and poly(propylene imine) (PPI)) are supported within solid mesoporous MIL‐101(Cr) to examine effects of support defect density on aminopolymer‐MOF interactions for CO2uptake and stability during uptake‐regeneration cycles. Using simulated flue gas (10 % CO2in He), MIL‐101(Cr)‐ρhigh(higher defect density) shows 33 % higher uptake capacity per gram adsorbent than MIL‐101(Cr)‐ρlow(lower defect density) at 308 K, consistent with increased availability of undercoordinated Cr adsorption sites at missing linker defects. Increasing aminopolymer weight loadings (10–50 wt.%) within MIL‐101(Cr)‐ρlowand MIL‐101(Cr)‐ρhighincreases amine efficiencies and CO2uptake capacities relative to bare MOFs, though both incur CO2diffusion limitations through confined, viscous polymer phases at higher (40–50 wt.%) loadings. Benchmarked against SBA‐15, lower polymer packing densities (PPI>PEI), weaker and less abundant van der Waals interactions between aminopolymers and pore walls, and open framework topology increase amine efficiencies. Interactions between amines and Cr defect sites incur amine efficiency losses but grant higher thermal and oxidative stability during uptake‐regeneration cycling. Finally, >25 % higher CO2uptake capacities are achieved for aminopolymer/MIL‐101(Cr)‐ρhighunder humid conditions, demonstrating promise for realistic applications.
-
Abstract Synthesized iron‐terephthalate metal–organic frameworks (MOFs), MIL‐101 and MOF‐235, with contrasting morphologies are examined to elucidate the role of structural arrangement in catalytic aqueous pollutant degradation. MIL‐101 demonstrates a larger pseudo‐first order rate constant than MOF‐235 (3.5 ± 0.2 molFe−1
· s−1vs. 0.84 ± 0.07 molFe−1· s−1) toward oxidation of methylene blue (MB) dye with excess hydrogen peroxide at ambient temperature, likely due to intrinsic differences in ligand coordination at their metal nodes. However, despite continued activity upon reuse, both MOFs undergo structural alterations resulting in formation of leached species active for MB degradation that have been obfuscated in previous studies. Detailed stability testing andex situ characterization of recovered catalyst, examinations that remain underreported in Fe‐MOF studies for pollutant oxidation, indicate that water plays a prominent role in the breakdown of these frameworks. Collectively, this work informs the interpretation and use of common Fe‐MOFs for aqueous applications, relating material changes to observed reaction phenomena. -
This study examines how the inherent diffusion constraints of MFI (3D, pore-limiting diameter (PLD) = 0.45 nm), BEA (3D, PLD = 0.60 nm), and MOR (1D, PLD = 0.65 nm) zeolite architectures, at both nanocrystal (nMFI, nBEA, nMOR; d crystal < 0.5 μm) and microcrystal (μBEA, μMOR; d crystal > 0.5 μm) scales, impact functions of mesopores in their hierarchical analogs. Reactivities, deactivation rates, and product selectivities were compared among zeolites, as well as to a mesoporous aluminosilicate control (Al-MCM-41; PLD = 6.2 nm), during Friedel–Crafts alkylation of 1,3,5-trimethylbenzene (TMB; d vdW = 0.72 nm) with benzyl alcohol (BA; d vdW = 0.58 nm) to form 1,3,5-trimethyl-2-benzylbenzene (TM2B; d vdW = 0.75 nm). Operation in the neat liquid phase ([TMB] 0 : [BA] 0 = 35 : 1, 393 K) ensured that the parallel BA self-etherification to yield dibenzyl ether (DBE; d vdW = 0.58 nm) occurred only at the expense of TM2B production when the alkylation reaction was impeded due to hindered access of TMB to confined protons. Investigation of secondary TM2B formation from reaction of DBE with TMB at low [BA]/[DBE] indicates an additional route of selectivity control for hierarchical zeolites that can achieve high BA conversion ( X BA > 0.9) with no DBE cofeed. These findings highlight a compounding advantage of increased diffusivity in mesopores that alter rates, extend lifetimes, and subsequently permit secondary reactions that enable significant shifts in product distribution. Fundamental insights into hierarchical zeolite reaction–diffusion–deactivation for alkylation of poly-substituted aromatics, as detailed here, can be applied broadly to reactions of other bulky species, including biomass-derived oxygenates, for more atom-efficient chemical and fuel production.more » « less
-
Isostructural Cr and Fe nanoporous MIL-101, synthesized without mineralizing agents, are investigated for styrene oxidation utilizing aqueous hydrogen peroxide to yield valuable oxygenates for chemical synthesis applications. Styrene conversion rates and oxygenate product distributions both depend on metal identity, as MIL-101(Fe) is more reactive for total styrene oxidation and is more pathway selective, preferring aldehyde (benzaldehyde) formation at the α-carbon to the aromatic ring, where MIL-101(Cr) sustains epoxide (styrene oxide) production at the same α-carbon. These pathways often involve hydrogen peroxide derived radical intermediates (O, –HOO˙, –HO − ˙) and metallocycle transition states. We postulate that the higher reactivity of one of these surface intermediates, Fe( iv )O relative to Cr( iv )O, leads to higher styrene oxidation rates for MIL-101(Fe), while higher electrophilicity of Cr( iii )–OOH intermediates translates to the higher styrene oxide selectivity observed for MIL-101(Cr). Secondary styrene oxide and benzaldehyde conversions are observed over both analogs, but the former is more prevalent over MIL-101(Fe) due to higher Lewis/Brønsted acid site density and strength compared to MIL-101(Cr). Recyclability experiments combined with characterization via XRD, SEM/EDXS, and FT-IR and UV-vis spectroscopies show that the nature of MIL-101(Fe) sites does not change significantly with each cycle, whereas MIL-101(Cr) suffers from metal leaching, which impacts styrene conversion rates and product distribution. Both catalysts require active site regeneration, though MIL-101(Fe) sites are more susceptible to reactivation, even under mild conditions. Finally, examination of styrene conversion for three unique synthesized phases of MIL-101(Cr) rationalizes that nodal defects are largely responsible for observed reactivity and selectivity but predispose the framework to metal leaching as a predominant deactivation mechanism.more » « less