skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Sarda, Deeksha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many potential medical applications for magnetically controlled tetherless devices inside the human body have been proposed, including procedures such as biopsies, blood clot removal, and targeted drug delivery. These devices are capable of wirelessly navigating through fluid-filled cavities in the body, such as the vascular system, eyes, urinary tract, and ventricular system, to reach areas difficult to access via conventional methods. Once at their target location, these devices could perform various medical interventions. This paper focuses on a special type of magnetic tetherless device called a magnetic rotating swimmer, which has internal magnets and propeller fins with a helical shape. To facilitate the design process, an automated geometry generation program using OpenSCAD was developed to create the swimmer design, while computational fluid dynamics simulations using OpenFOAM were employed to calculate the propulsive force produced by the swimmer. Furthermore, an experimental approach is proposed and demonstrated to validate the model. The results show good agreement between simulations and experiments, indicating that the model could be used to develop an automatic geometry optimization pipeline for rotating swimmers. 
    more » « less
    Free, publicly-accessible full text available August 28, 2025