We improve the previously best known upper bounds on the sizes of
 Home
 Search Results
 Page 1 of 1
Search for: All records

Total Resources2
 Resource Type

00020
 Availability

20
 Author / Contributor
 Filter by Author / Creator


Sardari, Naser Talebizadeh (2)

Jung, Junehyuk (1)

Zargar, Masoud (1)

#Tyler Phillips, Kenneth E. (0)

#Willis, Ciara (0)

& AbreuRamos, E. D. (0)

& Abramson, C. I. (0)

& AbreuRamos, E. D. (0)

& Adams, S.G. (0)

& Ahmed, K. (0)

& Ahmed, Khadija. (0)

& Aina, D.K. Jr. (0)

& AkcilOkan, O. (0)

& Akuom, D. (0)

& Aleven, V. (0)

& AndrewsLarson, C. (0)

& Archibald, J. (0)

& Arnett, N. (0)

& Arya, G. (0)

& Attari, S. Z. (0)

 Filter by Editor


& Spizer, S. M. (0)

& . Spizer, S. (0)

& Ahn, J. (0)

& Bateiha, S. (0)

& Bosch, N. (0)

& Brennan K. (0)

& Brennan, K. (0)

& Chen, B. (0)

& Chen, Bodong (0)

& Drown, S. (0)

& Ferretti, F. (0)

& Higgins, A. (0)

& J. Peters (0)

& Kali, Y. (0)

& RuizArias, P.M. (0)

& S. Spitzer (0)

& Sahin. I. (0)

& Spitzer, S. (0)

& Spitzer, S.M. (0)

(submitted  in Review for IEEE ICASSP2024) (0)


Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Abstract spherical codes for every$$\theta $$ $\theta $ at least by a factor of 0.4325, in sufficiently high dimensions. Furthermore, for sphere packing densities in dimensions$$\theta <\theta ^*\approx 62.997^{\circ }$$ $\theta <{\theta}^{\ast}\approx 62.{997}^{\circ}$ we have an improvement at least by a factor of$$n\ge 2000$$ $n\ge 2000$ . Our method also breaks many nonnumerical sphere packing density bounds in smaller dimensions. This is the first such improvement for each dimension since the work of Kabatyanskii and Levenshtein (Problemy Peredači Informacii 14(1):3–25, 1978) and its later improvement by Levenshtein (Dokl Akad Nauk SSSR 245(6):1299–1303, 1979) . Novelties of this paper include the analysis of triple correlations, usage of the concentration of mass in high dimensions, and the study of the spacings between the roots of Jacobi polynomials.$$0.4325+\frac{51}{n}$$ $0.4325+\frac{51}{n}$ 
Jung, Junehyuk ; Sardari, Naser Talebizadeh ( , Algebra & Number Theory)