skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sardashti, Kasra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ruthenium (Ru) is a promising candidate for next-generation electronic interconnects due to its low resistivity, small mean free path, and superior electromigration reliability at nanometer scales. In addition, Ru exhibits superconductivity below 1 K, with resistance to oxidation, low diffusivity, and a small superconducting gap, making it a potential material for superconducting qubits and Josephson Junctions. Here, we investigate the superconducting behavior of Ru thin films (11.9–108.5 nm thick), observing transition temperatures from 657.9 to 557 mK. A weak thickness dependence appears in the thinnest films, followed by a conventional inverse thickness dependence in thicker films. Magnetotransport studies reveal type-II superconductivity in the dirty limit (ξ ≫ l), with coherence lengths ranging from 13.5 to 27 nm. Finally, oxidation resistance studies confirm minimal RuOx growth after seven weeks of air exposure. These findings provide key insights for integrating Ru into superconducting electronic devices. 
    more » « less
  2. Abstract The intersection of superconductivity and ferroelectricity hosts a wide range of exotic quantum phenomena. Here, we report on the observation of superconductivity in high-quality tin telluride films grown by molecular beam epitaxy. Unintentionally doped tin telluride undergoes a ferroelectric transition at ~100 K. The critical temperature of superconductivity increases monotonically with indium concentration. The critical field of superconductivity, however, does not follow the same behavior as critical temperature with indium concentration and exhibits a carrier-density-dependent violation of the Pauli limit. The electron–phonon coupling, according to the McMillan formula, exhibits a systematic enhancement with indium concentration, suggesting a potential violation of Bardeen–Cooper–Schrieffer (BCS) weak coupling at high indium concentrations. 
    more » « less
  3. Free, publicly-accessible full text available November 1, 2025
  4. null (Ed.)