skip to main content


Search for: All records

Creators/Authors contains: "Sarkar, Abhra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2025
  2. Free, publicly-accessible full text available April 2, 2025
  3. Souza, Alessandra S (Ed.)

    What is the role of working memory over the course of non-native speech category learning? Prior work has predominantly focused on how working memory might influence learning assessed at a single timepoint. Here, we substantially extend this prior work by examining the role of working memory on speech learning performance over time (i.e., over several months) and leverage a multifaceted approach that provides key insights into how working memory influences learning accuracy, maintenance of knowledge over time, generalization ability, and decision processes. We found that the role of working memory in non-native speech learning depends on the timepoint of learning and whether individuals learned the categories at all. Among learners, across all stages of learning, working memory was associated with higher accuracy as well as faster and slightly more cautious decision making. Further, while learners and non-learners did not have substantially different working memory performance, learners had faster evidence accumulation and more cautious decision thresholds throughout all sessions. Working memory may enhance learning by facilitating rapid category acquisition in initial stages and enabling faster and slightly more careful decision-making strategies that may reduce the overall effort needed to learn. Our results have important implications for developing interventions to improve learning in naturalistic language contexts.

     
    more » « less
    Free, publicly-accessible full text available June 10, 2025
  4. Abstract

    The auditory system comprises multiple subcortical brain structures that process and refine incoming acoustic signals along the primary auditory pathway. Due to technical limitations of imaging small structures deep inside the brain, most of our knowledge of the subcortical auditory system is based on research in animal models using invasive methodologies. Advances in ultrahigh-field functional magnetic resonance imaging (fMRI) acquisition have enabled novel noninvasive investigations of the human auditory subcortex, including fundamental features of auditory representation such as tonotopy and periodotopy. However, functional connectivity across subcortical networks is still underexplored in humans, with ongoing development of related methods. Traditionally, functional connectivity is estimated from fMRI data with full correlation matrices. However, partial correlations reveal the relationship between two regions after removing the effects of all other regions, reflecting more direct connectivity. Partial correlation analysis is particularly promising in the ascending auditory system, where sensory information is passed in an obligatory manner, from nucleus to nucleus up the primary auditory pathway, providing redundant but also increasingly abstract representations of auditory stimuli. While most existing methods for learning conditional dependency structures based on partial correlations assume independently and identically Gaussian distributed data, fMRI data exhibit significant deviations from Gaussianity as well as high-temporal autocorrelation. In this paper, we developed an autoregressive matrix-Gaussian copula graphical model (ARMGCGM) approach to estimate the partial correlations and thereby infer the functional connectivity patterns within the auditory system while appropriately accounting for autocorrelations between successive fMRI scans. Our results show strong positive partial correlations between successive structures in the primary auditory pathway on each side (left and right), including between auditory midbrain and thalamus, and between primary and associative auditory cortex. These results are highly stable when splitting the data in halves according to the acquisition schemes and computing partial correlations separately for each half of the data, as well as across cross-validation folds. In contrast, full correlation-based analysis identified a rich network of interconnectivity that was not specific to adjacent nodes along the pathway. Overall, our results demonstrate that unique functional connectivity patterns along the auditory pathway are recoverable using novel connectivity approaches and that our connectivity methods are reliable across multiple acquisitions.

     
    more » « less
  5. null (Ed.)
  6. null (Ed.)