skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sarkar, Arijit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a scalable tensor-based approach to computing input-normal/output-diagonal nonlinear balancing transformations for control-affine systems with polynomial nonlinearities. This transformation is necessary to determine the states that can be truncated when forming a reduced-order model. Given a polynomial representation for the controllability and observability energy functions, we derive the explicit equations to compute a polynomial transformation to induce input-normal/output-diagonal structure in the energy functions in the transformed coordinates. The transformation is computed degree-by-degree, similar to previous Taylor-series approaches in the literature. However, unlike previous works, we provide a detailed analysis of the transformation equations in Kronecker product form to enable a more scalable implementation. We derive the explicit algebraic structure for the equations, present rigorous analyses for the solvability and algorithmic complexity of those equations, and provide general purpose open-source software implementations for the proposed algorithms to stimulate broader use of nonlinear balanced truncation model reduction. We demonstrate that with our efficient implementation, computing the nonlinear transformation is approximately as expensive as computing the energy functions using state-of-the-art methods. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  2. Free, publicly-accessible full text available April 29, 2026