skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Sarkar, Pratik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sherr, Micah ; Shafiq, Zubair (Ed.)
    Private heavy-hitters is a data-collection task where multiple clients possess private bit strings, and data-collection servers aim to identify the most popular strings without learning anything about the clients' inputs. In this work, we introduce PLASMA: a private analytics framework in the three-server setting that protects the privacy of honest clients and the correctness of the protocol against a coalition of malicious clients and a malicious server. Our core primitives are a verifiable incremental distributed point function (VIDPF) and a batched consistency check, which are of independent interest. Our VIDPF introduces new methods to validate client inputs based on hashing. Meanwhile, our batched consistency check uses Merkle trees to validate multiple client sessions together in a batch. This drastically reduces server communication across multiple client sessions, resulting in significantly less communication compared to related works. Finally, we compare PLASMA with the recent works of Asharov et al. (CCS'22) and Poplar (S&P'21) and compare in terms of monetary cost for different input sizes. 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  2. null (Ed.)
    Zero-knowledge (ZK) proofs with an optimal memory footprint have attracted a lot of attention, because such protocols can easily prove very large computation with a small memory requirement. Such ZK protocol only needs O(M) memory for both parties, where M is the memory required to verify the statement in the clear. In this paper, we propose several new ZK protocols in this setting, which improve the concrete efficiency and, at the same time, enable sublinear amortized communication for circuits with some notion of relaxed uniformity. 1. In the circuit-based model, where the computation is represented as a circuit over a field, our ZK protocol achieves a communication complexity of 1 field element per non-linear gate for any field size while keeping the computation very cheap. We implemented our protocol, which shows extremely high efficiency and affordability. Compared to the previous best-known implementation, we achieve 6×–7× improvement in computation and 3×– 7× improvement in communication. When running on intro-level AWS instances, our protocol only needs one US dollar to prove one trillion AND gates (or 2.5 US dollars for one trillion multiplication gates over a 61-bit field). 2. In the setting where part of the computation can be represented as a set of polynomials, we can achieve communication sublinear to the polynomial size: the communication only depends on the input size and the highest degree of all polynomials, independent of the number of polynomials and the number of multiplications in the polynomials. Using the improved ZK protocol, we can prove matrix multiplication with communication proportional to the input size, rather than the number of multiplications. Proving the multiplication of two 1024 × 1024 matrices, our implementation, with one thread and 1 GB of memory, only needs 10 seconds and communicates 25 MB, 35× faster than the state-of-the-art protocol Virgo that would need more than 140 GB of memory for the same task. 
    more » « less