- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Noh, Hae Young (3)
-
Sarkar, Sulagna (3)
-
Jermain, Zachary (2)
-
Lipton, Robert (2)
-
Brongersma, Mark (1)
-
Brongersma, Mark Brongersma (1)
-
Dayal, Kaushik (1)
-
Dong, Yiwen (1)
-
Fagert, Jonathon (1)
-
Gao, Yitao (1)
-
Hu, Zhizhang (1)
-
Ji, Anqi (1)
-
Ji, Anqi Ji (1)
-
Liu, Jingxiao (1)
-
Mirshekari, Mostafa (1)
-
Pan, Shijia (1)
-
Zhang, Pei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Optical metamaterials manipulate light through various confinement and scattering processes, offering unique advantages like high performance, small form factor and easy integration with semiconductor devices. However, designing metasurfaces with suitable optical responses for complex metamaterial systems remains challenging due to the exponentially growing computation cost and the ill‐posed nature of inverse problems. To expedite the computation for the inverse design of metasurfaces, a physics‐informed deep learning (DL) framework is used. A tandem DL architecture with physics‐based learning is used to select designs that are scientifically consistent, have low error in design prediction, and accurate reconstruction of optical responses. The authors focus on the inverse design of a representative plasmonic device and consider the prediction of design for the optical response of a single wavelength incident or a spectrum of wavelength in the visible light range. The physics‐based constraint is derived from solving the electromagnetic wave equations for a simplified homogenized model. The model converges with an accuracy up to 97% for inverse design prediction with the optical response for the visible light spectrum as input, and up to 96% for optical response of single wavelength of light as input, with optical response reconstruction accuracy of 99%.more » « less
-
Sarkar, Sulagna; Ji, Anqi Ji; Jermain, Zachary; Lipton, Robert; Brongersma, Mark Brongersma; Noh, Hae Young (, Advanced photonics research)Optical metamaterials manipulate light through various confinement and scattering processes, offering unique advantages like high performance, small form factor and easy integration with semiconductor devices. However, designing metasurfaces with suitable optical responses for complex metamaterial systems remains challenging due to the exponentially growing computation cost and the ill-posed nature of inverse problems. To expedite the computation for the inverse design of metasurfaces, a physics-informed deep learning (DL) framework is used. A tandem DL architecture with physics-based learning is used to select designs that are scientifically consistent, have low error in design prediction, and accurate reconstruction of optical responses. The authors focus on the inverse design of a representative plasmonic device and consider the prediction of design for the optical response of a single wavelength incident or a spectrum of wavelength in the visible light range. The physics-based constraint is derived from solving the electromagnetic wave equations for a simplified homogenized model. The model converges with an accuracy up to 97% for inverse design prediction with the optical response for the visible light spectrum as input, and up to 96% for optical response of single wavelength of light as input, with optical response reconstruction accuracy of 99%.more » « less
-
Dong, Yiwen; Liu, Jingxiao; Gao, Yitao; Sarkar, Sulagna; Hu, Zhizhang; Fagert, Jonathon; Pan, Shijia; Zhang, Pei; Noh, Hae Young; Mirshekari, Mostafa (, In Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers)null (Ed.)
An official website of the United States government

Full Text Available