skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sarkar, Sunetra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Flag flutter frequently features a marked difference between the onset speed of flutter and the speed below which flutter stops. The hysteresis tends to be especially large in experiments as opposed to simulations. This phenomenon has been ascribed to inherent imperfections of flatness in experimental samples, which are thought to inhibit the onset of flutter but have a lesser effect once a flag is already fluttering. In this work, we present an experimental confirmation for this explanation through motion tracking. We also visualize the wake to assess the potential contribution of discrete vortex shedding to hysteresis. We then mould our understanding of the mechanism of bistability and additional observations on flag flutter into a novel, observation-based, semiempirical model for flag flutter in the form of a single ordinary differential equation. Despite its simplicity, the model successfully reproduces key features of the physical system such as bistability, sudden transitions between non-fluttering and fluttering states, amplitude growth and frequency growth. 
    more » « less
    Free, publicly-accessible full text available October 25, 2026