skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sarma, Anita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Generative AI (genAI) tools (e.g., ChatGPT, Copilot) have become ubiquitous in software engineering (SE). As SE educators, it behooves us to understand the consequences of genAI usage among SE students and to create a holistic view of where these tools can be successfully used. Through 16 reflective interviews with SE students, we explored their academic experiences of using genAI tools to complement SE learning and implementations. We uncover the contexts where these tools are helpful and where they pose challenges, along with examining why these challenges arise and how they impact students. We validated our findings through member checking and triangulation with instructors. Our findings provide practical considerations of where and why genAI should (not) be used in the context of supporting SE students. 
    more » « less
    Free, publicly-accessible full text available April 28, 2026
  2. Generative AI (genAI) tools, such as ChatGPT or Copilot, are advertised to improve developer productivity and are being integrated into software development. However, misaligned trust, skepticism, and usability concerns can impede the adoption of such tools. Research also indicates that AI can be exclusionary, failing to support diverse users adequately. One such aspect of diversity is cognitive diversity -- variations in users' cognitive styles -- that leads to divergence in perspectives and interaction styles. When an individual's cognitive style is unsupported, it creates barriers to technology adoption. Therefore, to understand how to effectively integrate genAI tools into software development, it is first important to model what factors affect developers' trust and intentions to adopt genAI tools in practice? We developed a theoretically grounded statistical model to (1) identify factors that influence developers' trust in genAI tools and (2) examine the relationship between developers' trust, cognitive styles, and their intentions to use these tools in their work. We surveyed software developers (N=238) at two major global tech organizations: GitHub Inc. and Microsoft; and employed Partial Least Squares-Structural Equation Modeling (PLS-SEM) to evaluate our model. Our findings reveal that genAI's system/output quality, functional value, and goal maintenance significantly influence developers' trust in these tools. Furthermore, developers' trust and cognitive styles influence their intentions to use these tools in their work. We offer practical suggestions for designing genAI tools for effective use and inclusive user experience. 
    more » « less
    Free, publicly-accessible full text available April 28, 2026
  3. Code reviews are an ubiquitous and essential part of the software development process. They also offer a unique, at-scale opportunity for teaching developers in the context of their day-to-day development activities versus something more removed and formal, like a class. Yet there is little research on effective teaching through code reviews: focusing on learning for the author and not just changes to the code. We address this gap through a case study at Google: interviews with 14 developers revealed 12 patterns and 15 anti-patterns in code reviews that impact learning. For instance, explanatory rationale, sample solutions backed by standards, and a constructive tone facilitates learning, whereas harsh comments, excessive shallow critiques, and non-pragmatic reviewing that ignores authors' constraints hinders learning. We validated our qualitative findings through member checking, interviews with reviewers, a literature review, and a survey of 324 developers. This comprehensive study provides an empirical evidence of how social dynamics in code reviews impact learning. Based on our findings, we provide practical recommendations on how to frame constructive reviews to create a supportive learning environment. 
    more » « less
    Free, publicly-accessible full text available July 12, 2025
  4. Free, publicly-accessible full text available July 1, 2025
  5. Free, publicly-accessible full text available August 12, 2025
  6. Research within sociotechnical domains, such as Software Engineering, fundamentally requires the human perspective. Nevertheless, traditional qualitative data collection methods suffer from difficulties in participant recruitment, scaling, and labor intensity. This vision paper proposes a novel approach to qualitative data collection in software engineering research by harnessing the capabilities of artificial intelligence (AI), especially large language models (LLMs) like ChatGPT and multimodal foundation models. We explore the potential of AI-generated synthetic text as an alternative source of qualitative data, discussing how LLMs can replicate human responses and behaviors in research settings. We discuss AI applications in emulating humans in interviews, focus groups, surveys, observational studies, and user evaluations. We discuss open problems and research opportunities to implement this vision. In the future, an integrated approach where both AI and human-generated data coexist will likely yield the most effective outcomes. 
    more » « less