skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Sarrett, McCall E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Machine learning techniques have proven to be a useful tool in cognitive neuroscience. However, their implementation in scalp‐recorded electroencephalography (EEG) is relatively limited. To address this, we present three analyses using data from a previous study that examined event‐related potential (ERP) responses to a wide range of naturally‐produced speech sounds. First, we explore which features of the EEG signal best maximize machine learning accuracy for a voicing distinction, using a support vector machine (SVM). We manipulate three dimensions of the EEG signal as input to the SVM: number of trials averaged, number of time points averaged, and polynomial fit. We discuss the trade‐offs in using different feature sets and offer some recommendations for researchers using machine learning. Next, we use SVMs to classify specific pairs of phonemes, finding that we can detect differences in the EEG signal that are not otherwise detectable using conventional ERP analyses. Finally, we characterize the timecourse of phonetic feature decoding across three phonological dimensions (voicing, manner of articulation, and place of articulation), and find that voicing and manner are decodable from neural activity, whereas place of articulation is not. This set of analyses addresses both practical considerations in the application of machine learning to EEG, particularly for speech studies, and also sheds light on current issues regarding the nature of perceptual representations of speech. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025