skip to main content


Search for: All records

Creators/Authors contains: "Sato, Wakana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Efficient cell-free protein expression from linear DNA templates has remained a challenge primarily due to template degradation. In addition, the yields of transcription in cell-free systems lag behind transcriptional efficiency of live cells. Most commonly used in vitro translation systems utilize T7 RNA polymerase, which is also the enzyme included in many commercial kits.

    Results

    Here we present characterization of a variant of T7 RNA polymerase promoter that acts to significantly increase the yields of gene expression withinin vitrosystems. We have demonstrated that T7Max increases the yield of translation in many types of commonly used in vitro protein expression systems. We also demonstrated increased protein expression yields from linear templates, allowing the use of T7Max driven expression from linear templates.

    Conclusions

    The modified promoter, termed T7Max, recruits standard T7 RNA polymerase, so no protein engineering is needed to take advantage of this method. This technique could be used with any T7 RNA polymerase- basedin vitroprotein expression system.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Recently, a new subset of fluorescent proteins has been identified from the Aequorea species of jellyfish. These fluorescent proteins were characterized in vivo; however, there has not been validation of these proteins within cell-free systems. Cell-free systems and technology development is a rapidly expanding field, encompassing foundational research, synthetic cells, bioengineering, biomanufacturing, and drug development. Cell-free systems rely heavily on fluorescent proteins as reporters. Here we characterize and validate this new set of Aequorea proteins for use in a variety of cell-free and synthetic cell expression platforms. 
    more » « less
  3. Abstract

    Luciferases are often used as a sensitive, versatile reporter in cell-free transcription-translation (TXTL) systems, for research and practical applications such as engineering genetic parts, validating genetic circuits, and biosensor outputs. Currently, only two luciferases (Firefly and Renilla) are commonly used without substrate cross-talk. Here we demonstrate the expansion of the cell-free luciferase reporter system, with two orthogonal luciferase reporters:N. nambiluciferase (Luz) and LuxAB. These luciferases do not have cross-reactivity with the Firefly and Renilla substrates. We also demonstrate a substrate regeneration pathway for one of the new luciferases, enabling long-term time courses of protein expression monitoring in the cell-free system. Furthermore, we reduced the number of genes required in TXTL expression, by engineering a cell extract containing part of the luciferase enzymes. Our findings lead to an expanded platform with multiple orthogonal luminescence translation readouts for in vitro protein expression.

     
    more » « less
  4. Abstract

    Synthetic cells are engineered vesicles that can mimic one or more salient features of life. These features include directed localization, sense‐and‐respond behavior, gene expression, metabolism, and high stability. In nanomedicine, many of these features are desirable capabilities of drug delivery vehicles but are difficult to engineer. In this focus article, we discuss where synthetic cells offer unique advantages over nanoparticle and living cell therapies. We review progress in the engineering of the above life‐like behaviors and how they are deployed in nanomedicine. Finally, we assess key challenges synthetic cells face before being deployed as drugs and suggest ways to overcome these challenges.

    This article is categorized under:

    Therapeutic Approaches and Drug Discovery > Emerging Technologies

    Biology‐Inspired Nanomaterials > Lipid‐Based Structures

     
    more » « less
  5. Perez-Fernandez, Jorge (Ed.)

    Cell-free protein expression is increasingly becoming popular for biotechnology, biomedical and research applications. Among cell-free systems, the most popular one is based onEscherichia coli(E.coli). Endogenous nucleases inE.colicell-free transcription-translation (TXTL) degrade the free ends of DNA, resulting in inefficient protein expression from linear DNA templates. RecBCD is a nuclease complex that plays a major role in nuclease activity inE.coli, with the RecB subunit possessing the actual nuclease activity. We created aRecBknockout of anE.colistrain optimized for cell-free expression. We named this new strain Akaby. We demonstrated that Akaby TXTL successfully reduced linear DNA degradations, rescuing the protein expression efficiency from the linear DNA templates. The practicality of Akaby for TXTL is an efficient, simple alternative for linear template expression in cell-free reactions. We also use this work as a model protocol for modifying the TXTL sourceE.colistrain, enabling the creation of TXTL systems with other custom modifications.

     
    more » « less