skip to main content


Search for: All records

Creators/Authors contains: "Sauer, Erin L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Host sex is an important source of heterogeneity in the severity of epidemics. Pinpointing the mechanisms causing this heterogeneity can be difficult because differences in behaviour among sexes (e.g. greater territorial aggression in males) can bias exposure risk, obfuscating the role of immune function, which can lead to differences in pathology, in driving differential susceptibility between sexes. Thus, sex‐biased transmission driven by differences in immune function independent of behaviour is poorly understood, especially in non‐mammalian systems.

    Here we examine the previously unexplored potential for male‐biased pathology to affect transmission using an avian host–pathogen system. We employ a sex‐dependent multistate transmission model parameterized with isolated, individual‐based experimental exposures of domestic canaries and experimental transmission data of house finches.

    The experiment revealed that male birds have shorter incubation periods, longer recovery periods, higher pathogen burdens and greater disease pathology than females. Our model revealed that male‐biased pathology led to epidemic size rapidly increasing with the proportion of male birds, with a nearly 10‐fold increase in total epidemic size from an all‐female to an all‐male simulation.

    Our results demonstrate that female‐biased resistance, independent of male behaviour, can drive sex‐dependent transmission in wildlife, indicating that sex‐based differences in immune function, not just differences in exposure risk, can shape epidemic dynamics.

     
    more » « less
  2. Abstract

    Urbanization can influence local richness (alpha diversity) and community composition (beta diversity) in numerous ways. For instance, reduced connectivity and land cover change may lead to the loss of native specialist taxa, decreasing alpha diversity. Alternatively, if urbanization facilitates nonnative species introductions and generalist taxa, alpha diversity may remain unchanged or increase, while beta diversity could decline due to the homogenization of community structure. Wetlands and ponds provide critical ecosystem services and support diverse communities, making them important systems in which to understand the consequences of urbanization. To determine how urban development shapes pond community structure, we surveyed 68 ponds around Madison, Wisconsin, USA, which were classified as urban, greenspace, or rural based on surrounding land use. We evaluated how landscape and local pond factors were correlated with the alpha diversity of aquatic plants, macroinvertebrates, and aquatic vertebrates. We also analyzed whether surrounding land use was associated with changes in community composition and the presence of specific taxa. We found a 23% decrease in mean richness (alpha diversity) from rural to urban pond sites and a 15% decrease from rural to greenspace pond sites. Among landscape factors, adjacent developed land, mowed lawn cover, and greater distances to other waterbodies were negatively correlated with observed pond richness. Among pond level factors, habitat complexity was associated with increased richness, while nonnative fishes were associated with decreased richness. Beta diversity was relatively high for all ponds due to turnover in composition between sites. Urban ponds supported more nonnative species, lacked a subset of native species found in rural ponds, and had slightly higher beta diversity than greenspace and rural ponds. Our results suggest that integrating ponds into connected greenspaces, maintaining riparian vegetation, preventing nonnative fish introductions, and promoting habitat complexity may mitigate the negative effects of urbanization on aquatic richness. While ponds are small in size and rarely incorporated into urban conservation planning, the high beta diversity of distinct pond communities emphasizes their importance for supporting urban biodiversity.

     
    more » « less
  3. Abstract

    Predators can increase the biomass of their prey, particularly when prey life stages differ in competitive ability and predation is stage specific. Akin to predators, parasites influence host population sizes and engage in stage‐structured interactions, yet whether parasites can increase host population biomass remains relatively unexplored. Using a stage‐structured consumer–resource model and a mesocosm experiment with snails and castrating trematodes, we examined responses of host biomass to changes in infection prevalence under variation in host pathology and resource competition. Equilibrium adult host biomass increased with infection prevalence in the model when parasites castrated hosts and adults were superior competitors to juveniles. Juvenile biomass increased with infection prevalence whether parasites caused mortality or castration, but only when juveniles were superior competitors. In mesocosms, increases in infection by castrating trematodes reduced snail egg production, juvenile abundance, and adult survival. At high competition, juvenile growth and total biomass increased with infection prevalence due to competitive release. At low competition, juvenile biomass decreased with infection due to reduced reproduction. These results highlight how disease‐induced biomass overcompensation depends on infection pathology, resource availability, and competitive interactions within and between host life stages. Considering such characteristics may benefit biocontrol efforts using parasites.

     
    more » « less
  4. Abstract

    Non‐native freshwater snails can play important roles as consumers, hosts, and prey. Despite their potential ecological importance, global patterns in non‐native snail taxonomy, geography, and ecology have not been documented. Our objectives were to use a semi‐quantitative systematic review to describe non‐native freshwater snail global diversity, distribution, mechanisms of introduction, and interactions with natural enemies, including parasites and predators.

    Based on 506 relevant publications, we recorded 95 non‐native freshwater snail species from 16 families. Six taxonomic families, and pulmonate snails as a group, were over‐represented relative to the number of species expected by chance. Eight snail species represented 63% of the research records. A few snail taxa (15%) were widespread global invaders, reported from four or more continents, while most invasions were limited to a single continent. Australia and the Pacific Islands were the largest ‘sink’ for non‐native snails, with the greatest difference in the number of non‐native taxa relative to native taxa that had spread to other continents.

    Aquarium hobby sales were implicated as the most common mechanism of introduction (41% of species), followed by “hitchhiking” on aquatic vegetation, human consumption, use for biocontrol, transportation in canals, commercial shipping, and outdoor recreation. A search of internet sales posts indicated that four of the six over‐represented snail families were readily available for purchase online.

    Non‐native snails hosted parasites of wildlife, livestock, and human health importance, yet on average had 80% lower parasite richness in their non‐native compared to native range. At least 65 taxa were documented as consumers of non‐native snails, including native predators of conservation concern. These findings suggest that non‐native snails often are released from parasitism, but may commonly experience biotic resistance from predators.

    Our synthesis emphasizes the relatively high diversity of non‐native snails, but the disproportionate role of a few taxonomic groups in driving ecological, economic, and public health challenges. Moving forward, it will be important to limit new snail introductions through policy, education, and monitoring, particularly as the effective control of established snail invasions remains challenging in most ecosystems.

     
    more » « less
  5. Disease outbreaks among wildlife have surged in recent decades alongside climate change, although it remains unclear how climate change alters disease dynamics across different geographic regions. We amassed a global, spatiotemporal dataset describing parasite prevalence across 7346 wildlife populations and 2021 host-parasite combinations, compiling local weather and climate records at each location. We found that hosts from cool and warm climates experienced increased disease risk at abnormally warm and cool temperatures, respectively, as predicted by the thermal mismatch hypothesis. This effect was greatest in ectothermic hosts and similar in terrestrial and freshwater systems. Projections based on climate change models indicate that ectothermic wildlife hosts from temperate and tropical zones may experience sharp increases and moderate reductions in disease risk, respectively, though the magnitude of these changes depends on parasite identity.

     
    more » « less
  6. Abstract

    Global climate change is increasing the frequency of unpredictable weather conditions; however, it remains unclear how species‐level and geographic factors, including body size and latitude, moderate impacts of unusually warm or cool temperatures on disease. Because larger and lower‐latitude hosts generally have slower acclimation times than smaller and higher‐latitude hosts, we hypothesised that their disease susceptibility increases under ‘thermal mismatches’ or differences between baseline climate and the temperature during surveying for disease. Here, we examined how thermal mismatches interact with body size, life stage, habitat, latitude, elevation, phylogeny and International Union for Conservation of Nature (IUCN) conservation status to predict infection prevalence of the chytrid fungusBatrachochytrium dendrobatidis(Bd) in a global analysis of 32 291 amphibian hosts. As hypothesised, we found that the susceptibility of larger hosts and hosts from lower latitudes toBdwas influenced by thermal mismatches. Furthermore, hosts of conservation concern were more susceptible than others following thermal mismatches, suggesting that thermal mismatches might have contributed to recent amphibian declines.

     
    more » « less