skip to main content

Search for: All records

Creators/Authors contains: "Saxena, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the present work we propose a nonlinear anti- P T -symmetric dimer, that at the linear level has been experimentally created in the realm of electric circuit resonators. We find four families of solutions, the so-called upper and lower branches, both in a symmetric and in an asymmetric (symmetry-broken) form. We unveil analytically and confirm numerically the critical thresholds for the existence of such branches and explore the bifurcations (such as saddle-node ones) that delimit their existence, as well as transcritical ones that lead to their potential exchange of stability. We find that out of the four relevant branches, only one, the upper symmetric branch, corresponds to a spectrally and dynamically robust solution. We subsequently leverage detailed direct numerical computations in order to explore the dynamics of the different states, corroborating our spectral analysis results.
    Free, publicly-accessible full text available April 26, 2023
  2. Free, publicly-accessible full text available March 1, 2023
  3. ABSTRACT We present results from the NIRVANDELS survey on the gas-phase metallicity (Zg, tracing O/H) and stellar metallicity (Z⋆, tracing Fe/H) of 33 star-forming galaxies at redshifts 2.95 < z < 3.80. Based on a combined analysis of deep optical and near-IR spectra, tracing the rest-frame far-ultraviolet (FUV; 1200–2000 Å) and rest-frame optical (3400–5500 Å), respectively, we present the first simultaneous determination of the stellar and gas-phase mass–metallicity relationships (MZRs) at z ≃ 3.4. In both cases, we find that metallicity increases with increasing stellar mass (M⋆) and that the power-law slope at M⋆ ≲ 1010M⊙ of both MZRs scales as $Z \propto M_{\star }^{0.3}$. Comparing the stellar and gas-phase MZRs, we present direct evidence for super-solar O/Fe ratios (i.e. α-enhancement) at z > 3, finding (O/Fe) = 2.54 ± 0.38 × (O/Fe)⊙, with no clear dependence on M⋆.