skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sayas, Francisco-Javier"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In this paper, we propose a simple way of constructing HDG+ projections on polyhedral elements. The projections enable us to analyze the Lehrenfeld–Schöberl HDG (HDG+) methods in a very concise manner, and make many existing analysis techniques of standard HDG methods reusable for HDG+. The novelty here is an alternative way of constructing the projections without using M M -decompositions as a middle step. This extends our previous results [S. Du and F.-J. Sayas, SpringerBriefs in Mathematics (2019)] (elliptic problems) and [S. Du and F.-J. Sayas, Math. Comp. 89 (2020), pp. 1745–1782] (elasticity) to polyhedral meshes. 
    more » « less
  2. Abstract We consider the problem of waves propagating in a viscoelastic solid. For the material properties of the solid we consider both classical and fractional differentiation in time versions of the Zener, Maxwell, and Voigt models, where the coupling of different models within the same solid are covered as well. Stability of each model is investigated in the Laplace domain, and these are then translated to time-domain estimates. With the use of semigroup theory, some time-domain results are also given which avoid using the Laplace transform and give sharper estimates. We take the time to develop and explain the theory necessary to understand the relation between the equations we solve in the Laplace domain and those in the time-domain which are written using the language of causal tempered distributions. Finally we offer some numerical experiments that highlight some of the differences between the models and how different parameters effect the results. 
    more » « less
  3. Abstract We consider an optimal control problem where the state equations are a coupled hyperbolic–elliptic system. This system arises in elastodynamics with piezoelectric effects—the elastic stress tensor is a function of elastic displacement and electric potential. The electric flux acts as the control variable and bound constraints on the control are considered. We develop a complete analysis for the state equations and the control problem. The requisite regularity on the control, to show the well-posedness of the state equations, is enforced using the cost functional. We rigorously derive the first-order necessary and sufficient conditions using adjoint equations and further study their well-posedness. For spatially discrete (time-continuous) problems, we show the convergence of our numerical scheme. Three-dimensional numerical experiments are provided showing convergence properties of a fully discrete method and the practical applicability of our approach. 
    more » « less