- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Saykally, Richard J. (2)
-
Benjamin, Ilan (1)
-
Bhattacharyya, Dhritiman (1)
-
Bradforth, Stephen E. (1)
-
Devlin, Shane W. (1)
-
Mizuno, Hikaru (1)
-
Rizzuto, Anthony M. (1)
-
Zhang, Yuyuan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The adsorption of ions to water-hydrophobe interfaces influences a wide range of phenomena, including chemical reaction rates, ion transport across biological membranes, and electrochemical and many catalytic processes; hence, developing a detailed understanding of the behavior of ions at water-hydrophobe interfaces is of central interest. Here, we characterize the adsorption of the chaotropic thiocyanate anion (SCN−) to two prototypical liquid hydrophobic surfaces, water-toluene and water-decane, by surface-sensitive nonlinear spectroscopy and compare the results against our previous studies of SCN−adsorption to the air-water interface. For these systems, we observe no spectral shift in the charge transfer to solvent spectrum of SCN−, and the Gibb’s free energies of adsorption for these three different interfaces all agree within error. We employed molecular dynamics simulations to develop a molecular-level understanding of the adsorption mechanism and found that the adsorption for SCN−to both water-toluene and water-decane interfaces is driven by an increase in entropy, with very little enthalpic contribution. This is a qualitatively different mechanism than reported for SCN−adsorption to the air-water and graphene-water interfaces, wherein a favorable enthalpy change was the main driving force, against an unfavorable entropy change.more » « less
-
Bhattacharyya, Dhritiman; Mizuno, Hikaru; Rizzuto, Anthony M.; Zhang, Yuyuan; Saykally, Richard J.; Bradforth, Stephen E. (, The Journal of Physical Chemistry Letters)
An official website of the United States government
