skip to main content


Search for: All records

Creators/Authors contains: "Scarabelli, Leonardo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Colloidal metasurfaces are emerging as promising candidates for the development of functional chemical metamaterials, combining the undisputed control over crystallography and surface chemistry achieved by synthetic nanochemistry with the scalability and versatility of colloidal self‐assembly strategies. In light of recent reports of colloidal plasmonic materials displaying high‐performing optical cavities, this Minireview discusses the use of this type of metamaterials in the specific context of non‐linear optical phenomena and non‐linear molecular spectroscopies. Our attention is focused on the opportunities and advantages that colloidal nanoparticles and self‐assembled plasmonic metasurfaces can bring to the table compared to more traditional nanofabrication strategies. Specifically, we believe that future work in this direction will express the full potential of non‐linear molecular spectroscopies to explore the chemical space, with a deeper understanding of plasmon‐molecule dynamics, plasmon‐mediated processes, and surface‐enhanced chemistry.

     
    more » « less
  2. Abstract

    Precise arrangements of plasmonic nanoparticles on substrates are important for designing optoelectronics, sensors and metamaterials with rational electronic, optical and magnetic properties. Bottom‐up synthesis offers unmatched control over morphology and optical response of individual plasmonic building blocks. Usually, the incorporation of nanoparticles made by bottom‐up wet chemistry starts from batch synthesis of colloids, which requires time‐consuming and hard‐to‐scale steps like ligand exchange and self‐assembly. Herein, an unconventional bottom‐up wet‐chemical synthetic approach for producing gold nanoparticle ordered arrays is developed. Water‐processable hydroxypropyl cellulose stencils facilitate the patterning of a reductant chemical ink on which nanoparticle growth selectively occurs. Arrays exhibiting lattice plasmon resonances in the visible region and near infrared (quality factors of >20) are produced following a rapid synthetic step (<10 min), all without cleanroom fabrication, specialized equipment, or self‐assembly, constituting a major step forward in establishing in situ growth approaches. Further, the technical capabilities of this method through modulation of the particle size, shape, and array spacings directly on the substrate are demonstrated. Ultimately, establishing a fundamental understanding of in situ growth has the potential to inform the fabrication of plasmonic materials; opening the door for in situ growth fabrication of waveguides, lasing platforms, and plasmonic sensors.

     
    more » « less
  3. Abstract

    Tunable Fano resonances and plasmon–exciton coupling are demonstrated at room temperature in hybrid systems consisting of single plasmonic nanoparticles deposited on top of the transition metal dichalcogenide monolayers. By using single Au nanotriangles (AuNTs) on monolayer WS2as model systems, Fano resonances are observed from the interference between a discrete exciton band of monolayer WS2and a broadband plasmonic mode of single AuNTs. The Fano lineshape depends on the exciton binding energy and the localized surface plasmon resonance strength, which can be tuned by the dielectric constant of surrounding solvents and AuNT size, respectively. Moreover, a transition from weak to strong plasmon–exciton coupling with Rabi splitting energies of 100–340 meV is observed by rationally changing the surrounding solvents. With their tunable plasmon–exciton interactions, the proposed WS2–AuNT hybrids can open new pathways to develop active nanophotonic devices.

     
    more » « less