Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In Augmented Reality (AR), virtual content enhances user experience by providing additional information. However, improperly positioned or designed virtual content can be detrimental to task performance, as it can impair users' ability to accurately interpret real-world information. In this paper we examine two types of task-detrimental virtual content: obstruction attacks, in which virtual content prevents users from seeing real-world objects, and information manipulation attacks, in which virtual content interferes with users' ability to accurately interpret real-world information. We provide a mathematical framework to characterize these attacks and create a custom open-source dataset for attack evaluation. To address these attacks, we introduce ViDDAR (Vision language model-based Task-Detrimental content Detector for Augmented Reality), a comprehensive full-reference system that leverages Vision Language Models (VLMs) and advanced deep learning techniques to monitor and evaluate virtual content in AR environments, employing a user-edge-cloud architecture to balance performance with low latency. To the best of our knowledge, ViDDAR is the first system to employ VLMs for detecting task-detrimental content in AR settings. Our evaluation results demonstrate that ViDDAR effectively understands complex scenes and detects task-detrimental content, achieving up to 92.15% obstruction detection accuracy with a detection latency of 533 ms, and an 82.46% information manipulation content detection accuracy with a latency of 9.62 s.more » « lessFree, publicly-accessible full text available March 10, 2026
-
Robust pervasive context-aware augmented reality (AR) has the potential to enable a range of applications that support users in reaching their personal and professional goals. In such applications, AR can be used to deliver richer, more immersive, and more timely just in time adaptive interventions (JITAI) than conventional mo-bile solutions, leading to more effective support of the user. This position paper defines a research agenda centered on improving AR applications' environmental, user, and social context awareness. Specifically, we argue for two key architectural approaches that will allow pushing AR context awareness to the next level: use of wearable and Internet of Things (IoT) devices as additional data streams that complement the data captured by the AR devices, and the development of edge computing-based mechanisms for enriching existing scene understanding and simultaneous localization and mapping (SLAM) algorithms. The paper outlines a collection of specific research directions in the development of such architectures and in the design of next-generation environmental, user, and social context awareness algorithms.more » « less
-
Mobile augmented reality (AR) has been attracting considerable attention from industry and academia due to its potential to provide vibrant immersive experiences that seamlessly blend physical and virtual worlds. In this paper we focus on creating contextual and personalized AR experiences via edge-based on-demand provisioning of holographic content most appropriate for the conditions and/or most matching user interests. We present edge-based hologram provisioning and pre-provisioning frameworks we developed for Google ARCore and Magic Leap One AR experiences, and describe open challenges and research directions associated with this approach to holographic content storage and transfer. The code we have developed for this paper is available online.more » « less
An official website of the United States government
