skip to main content


Search for: All records

Creators/Authors contains: "Scarpine, V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present a sample of 19 583 ultracool dwarf candidates brighter than z ≤23 selected from the Dark Energy Survey DR2 coadd data matched to VHS DR6, VIKING DR5, and AllWISE covering ∼ 480 deg2. The ultracool candidates were first pre-selected based on their (i–z), (z–Y), and (Y–J) colours. They were further classified using a method that compares their optical, near-infrared, and mid-infrared colours against templates of M, L, and T dwarfs. 14 099 objects are presented as new L and T candidates and the remaining objects are from the literature, including 5342 candidates from our previous work. Using this new and deeper sample of ultracool dwarf candidates we also present: 20 new candidate members to nearby young moving groups and associations, variable candidate sources and four new wide binary systems composed of two ultracool dwarfs. Finally, we also show the spectra of 12 new ultracool dwarfs discovered by our group and presented here for the first time. These spectroscopically confirmed objects are a sanity check of our selection of ultracool dwarfs and photometric classification method.

     
    more » « less
  2. ABSTRACT

    We cross-match and compare characteristics of galaxy clusters identified in observations from two sky surveys using two completely different techniques. One sample is optically selected from the analysis of 3 years of Dark Energy Survey observations using the redMaPPer cluster detection algorithm. The second is X-ray selected from XMM observations analysed by the XMM Cluster Survey. The samples comprise a total area of 57.4 deg2, bounded by the area of four contiguous XMM survey regions that overlap the DES footprint. We find that the X-ray-selected sample is fully matched with entries in the redMaPPer catalogue, above λ > 20 and within 0.1 <$z$ <0.9. Conversely, only 38 per cent of the redMaPPer catalogue is matched to an X-ray extended source. Next, using 120 optically clusters and 184 X-ray-selected clusters, we investigate the form of the X-ray luminosity–temperature (LX –TX ), luminosity–richness (LX –λ), and temperature–richness (TX –λ) scaling relations. We find that the fitted forms of the LX –TX relations are consistent between the two selection methods and also with other studies in the literature. However, we find tentative evidence for a steepening of the slope of the relation for low richness systems in the X-ray-selected sample. When considering the scaling of richness with X-ray properties, we again find consistency in the relations (i.e. LX –λ and TX –λ) between the optical and X-ray-selected samples. This is contrary to previous similar works that find a significant increase in the scatter of the luminosity scaling relation for X-ray-selected samples compared to optically selected samples.

     
    more » « less
  3. ABSTRACT

    The fiducial cosmological analyses of imaging surveys like DES typically probe the Universe at redshifts z < 1. We present the selection and characterization of high-redshift galaxy samples using DES Year 3 data, and the analysis of their galaxy clustering measurements. In particular, we use galaxies that are fainter than those used in the previous DES Year 3 analyses and a Bayesian redshift scheme to define three tomographic bins with mean redshifts around z ∼ 0.9, 1.2, and 1.5, which extend the redshift coverage of the fiducial DES Year 3 analysis. These samples contain a total of about 9 million galaxies, and their galaxy density is more than 2 times higher than those in the DES Year 3 fiducial case. We characterize the redshift uncertainties of the samples, including the usage of various spectroscopic and high-quality redshift samples, and we develop a machine-learning method to correct for correlations between galaxy density and survey observing conditions. The analysis of galaxy clustering measurements, with a total signal to noise S/N ∼ 70 after scale cuts, yields robust cosmological constraints on a combination of the fraction of matter in the Universe Ωm and the Hubble parameter h, $\Omega _m h = 0.195^{+0.023}_{-0.018}$, and 2–3  per cent measurements of the amplitude of the galaxy clustering signals, probing galaxy bias and the amplitude of matter fluctuations, bσ8. A companion paper (in preparation) will present the cross-correlations of these high-z samples with cosmic microwave background lensing from Planck and South Pole Telescope, and the cosmological analysis of those measurements in combination with the galaxy clustering presented in this work.

     
    more » « less
  4. ABSTRACT

    The correlation between the broad line region radius and continuum luminosity (R–L relation) of active galactic nuclei (AGNs) is critical for single-epoch mass estimates of supermassive black holes (SMBHs). At z ∼ 1–2, where AGN activity peaks, the R–L relation is constrained by the reverberation mapping (RM) lags of the Mg ii line. We present 25 Mg ii lags from the Australian Dark Energy Survey RM project based on 6 yr of monitoring. We define quantitative criteria to select good lag measurements and verify their reliability with simulations based on both the damped random walk stochastic model and the rescaled, resampled versions of the observed light curves of local, well-measured AGN. Our sample significantly increases the number of Mg ii lags and extends the R–L relation to higher redshifts and luminosities. The relative iron line strength $\mathcal {R}_{\rm Fe}$ has little impact on the R–L relation. The best-fitting Mg iiR–L relation has a slope α = 0.39 ± 0.08 with an intrinsic scatter $\sigma _{\rm rl} = 0.15^{+0.03}_{-0.02}$ . The slope is consistent with previous measurements and shallower than the H β R–L relation. The intrinsic scatter of the new R–L relation is substantially smaller than previous studies and comparable to the intrinsic scatter of the H β R–L relation. Our new R–L relation will enable more precise single-epoch mass estimates and SMBH demographic studies at cosmic noon.

     
    more » « less
  5. ABSTRACT

    We present an alternative calibration of the MagLim lens sample redshift distributions from the Dark Energy Survey (DES) first 3 yr of data (Y3). The new calibration is based on a combination of a self-organizing-map-based scheme and clustering redshifts to estimate redshift distributions and inherent uncertainties, which is expected to be more accurate than the original DES Y3 redshift calibration of the lens sample. We describe in detail the methodology, and validate it on simulations and discuss the main effects dominating our error budget. The new calibration is in fair agreement with the fiducial DES Y3 n(z) calibration, with only mild differences (<3σ) in the means and widths of the distributions. We study the impact of this new calibration on cosmological constraints, analysing DES Y3 galaxy clustering and galaxy–galaxy lensing measurements, assuming a Lambda cold dark matter cosmology. We obtain Ωm = 0.30 ± 0.04, σ8 = 0.81 ± 0.07, and S8 = 0.81 ± 0.04, which implies a ∼0.4σ shift in the Ω − S8 plane compared to the fiducial DES Y3 results, highlighting the importance of the redshift calibration of the lens sample in multiprobe cosmological analyses.

     
    more » « less
  6. ABSTRACT

    We present direct constraints on galaxy intrinsic alignments (IAs) using the Dark Energy Survey Year 3 (DES Y3), the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and its precursor, the Baryon Oscillation Spectroscopic Survey (BOSS). Our measurements incorporate photometric red sequence (redMaGiC) galaxies from DES with median redshift z ∼ 0.2–1.0, luminous red galaxies from eBOSS at z ∼ 0.8, and also an SDSS-III BOSS CMASS sample at z ∼ 0.5. We measure two-point IA correlations, which we fit using a model that includes lensing, magnification, and photometric redshift error. Fitting on scales 6 Mpc h−1 < rp < 70 Mpc h−1, we make a detection of IAs in each sample, at 5σ–22σ (assuming a simple one-parameter model for IAs). Using these red samples, we measure the IA–luminosity relation. Our results are statistically consistent with previous results, but offer a significant improvement in constraining power, particularly at low luminosity. With this improved precision, we see detectable dependence on colour between broadly defined red samples. It is likely that a more sophisticated approach than a binary red/blue split, which jointly considers colour and luminosity dependence in the IA signal, will be needed in future. We also compare the various signal components at the best-fitting point in parameter space for each sample, and find that magnification and lensing contribute $\sim 2\!-\!18~{{\ \rm per\ cent}}$ of the total signal. As precision continues to improve, it will certainly be necessary to account for these effects in future direct IA measurements. Finally, we make equivalent measurements on a sample of emission-line galaxies from eBOSS at z ∼ 0.8. We constrain the non-linear alignment amplitude to be $A_1=0.07^{+0.32}_{-0.42}$ (|A1| < 0.78 at 95 per cent CL).

     
    more » « less
  7. ABSTRACT

    Recent analyses have found intriguing correlations between the colour (c) of type Ia supernovae (SNe Ia) and the size of their ‘mass-step’, the relationship between SN Ia host galaxy stellar mass (Mstellar) and SN Ia Hubble residual, and suggest that the cause of this relationship is dust. Using 675 photometrically classified SNe Ia from the Dark Energy Survey 5-yr sample, we study the differences in Hubble residual for a variety of global host galaxy and local environmental properties for SN Ia subsamples split by their colour. We find a 3σ difference in the mass-step when comparing blue (c < 0) and red (c > 0) SNe. We observe the lowest r.m.s. scatter (∼0.14 mag) in the Hubble residual for blue SNe in low mass/blue environments, suggesting that this is the most homogeneous sample for cosmological analyses. By fitting for c-dependent relationships between Hubble residuals and Mstellar, approximating existing dust models, we remove the mass-step from the data and find tentative ∼2σ residual steps in rest-frame galaxy U − R colour. This indicates that dust modelling based on Mstellar may not fully explain the remaining dispersion in SN Ia luminosity. Instead, accounting for a c-dependent relationship between Hubble residuals and global U − R, results in ≤1σ residual steps in Mstellar and local U − R, suggesting that U − R provides different information about the environment of SNe Ia compared to Mstellar, and motivating the inclusion of galaxy U − R colour in SN Ia distance bias correction.

     
    more » « less
  8. ABSTRACT

    We present a method for mapping variations between probability distribution functions and apply this method within the context of measuring galaxy redshift distributions from imaging survey data. This method, which we name PITPZ for the probability integral transformations it relies on, uses a difference in curves between distribution functions in an ensemble as a transformation to apply to another distribution function, thus transferring the variation in the ensemble to the latter distribution function. This procedure is broadly applicable to the problem of uncertainty propagation. In the context of redshift distributions, for example, the uncertainty contribution due to certain effects can be studied effectively only in simulations, thus necessitating a transfer of variation measured in simulations to the redshift distributions measured from data. We illustrate the use of PITPZ by using the method to propagate photometric calibration uncertainty to redshift distributions of the Dark Energy Survey Year 3 weak lensing source galaxies. For this test case, we find that PITPZ yields a lensing amplitude uncertainty estimate due to photometric calibration error within 1 per cent of the truth, compared to as much as a 30 per cent underestimate when using traditional methods.

     
    more » « less
  9. ABSTRACT

    Gravitational time delays provide a powerful one-step measurement of H0, independent of all other probes. One key ingredient in time-delay cosmography are high-accuracy lens models. Those are currently expensive to obtain, both, in terms of computing and investigator time (105–106 CPU hours and ∼0.5–1 yr, respectively). Major improvements in modelling speed are therefore necessary to exploit the large number of lenses that are forecast to be discovered over the current decade. In order to bypass this roadblock, we develop an automated modelling pipeline and apply it to a sample of 31 lens systems, observed by the Hubble Space Telescope in multiple bands. Our automated pipeline can derive models for 30/31 lenses with few hours of human time and <100 CPU hours of computing time for a typical system. For each lens, we provide measurements of key parameters and predictions of magnification as well as time delays for the multiple images. We characterize the cosmography-readiness of our models using the stability of differences in the Fermat potential (proportional to time delay) with respect to modelling choices. We find that for 10/30 lenses, our models are cosmography or nearly cosmography grade (<3 per cent and 3–5 per cent variations). For 6/30 lenses, the models are close to cosmography grade (5–10 per cent). These results utilize informative priors and will need to be confirmed by further analysis. However, they are also likely to improve by extending the pipeline modelling sequence and options. In conclusion, we show that uniform cosmography grade modelling of large strong lens samples is within reach.

     
    more » « less
  10. ABSTRACT

    We compare the two largest galaxy morphology catalogues, which separate early- and late-type galaxies at intermediate redshift. The two catalogues were built by applying supervised deep learning (convolutional neural networks, CNNs) to the Dark Energy Survey data down to a magnitude limit of ∼21 mag. The methodologies used for the construction of the catalogues include differences such as the cutout sizes, the labels used for training, and the input to the CNN – monochromatic images versus gri-band normalized images. In addition, one catalogue is trained using bright galaxies observed with DES (i < 18), while the other is trained with bright galaxies (r < 17.5) and ‘emulated’ galaxies up to r-band magnitude 22.5. Despite the different approaches, the agreement between the two catalogues is excellent up to i < 19, demonstrating that CNN predictions are reliable for samples at least one magnitude fainter than the training sample limit. It also shows that morphological classifications based on monochromatic images are comparable to those based on gri-band images, at least in the bright regime. At fainter magnitudes, i > 19, the overall agreement is good (∼95 per cent), but is mostly driven by the large spiral fraction in the two catalogues. In contrast, the agreement within the elliptical population is not as good, especially at faint magnitudes. By studying the mismatched cases, we are able to identify lenticular galaxies (at least up to i < 19), which are difficult to distinguish using standard classification approaches. The synergy of both catalogues provides an unique opportunity to select a population of unusual galaxies.

     
    more » « less