skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schaefer, Clemens"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM) 1 promises to meet such demand by storing AI model weights in dense, analogue and non-volatile RRAM devices, and by performing AI computation directly within RRAM, thus eliminating power-hungry data movement between separate compute and memory 2–5 . Although recent studies have demonstrated in-memory matrix-vector multiplication on fully integrated RRAM-CIM hardware 6–17 , it remains a goal for a RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to support diverse models and software-comparable accuracy. Although efficiency, versatility and accuracy are all indispensable for broad adoption of the technology, the inter-related trade-offs among them cannot be addressed by isolated improvements on any single abstraction level of the design. Here, by co-optimizing across all hierarchies of the design from algorithms and architecture to circuits and devices, we present NeuRRAM—a RRAM-based CIM chip that simultaneously delivers versatility in reconfiguring CIM cores for diverse model architectures, energy efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips across various computational bit-precisions, and inference accuracy comparable to software models quantized to four-bit weights across various AI tasks, including accuracy of 99.0 percent on MNIST 18 and 85.7 percent on CIFAR-10 19 image classification, 84.7-percent accuracy on Google speech command recognition 20 , and a 70-percent reduction in image-reconstruction error on a Bayesian image-recovery task. 
    more » « less
  2. null (Ed.)
    The increasingly central role of speech based human computer interaction necessitates on-device, low-latency, low-power, high-accuracy key word spotting (KWS). State-of-the-art accuracies on speech-related tasks have been achieved by long short-term memory (LSTM) neural network (NN) models. Such models are typically computationally intensive because of their heavy use of Matrix vector multiplication (MVM) operations. Compute-in-Memory (CIM) architectures, while well suited to MVM operations, have not seen widespread adoption for LSTMs. In this paper we adapt resistive random access memory based CIM architectures for KWS using LSTMs. We find that a hybrid system composed of CIM cores and digital cores achieves 90% test accuracy on the google speech data set at the cost of 25 uJ/decision. Our optimized architecture uses 5-bit inputs, and analog weights to produce 6-bit outputs. All digital computation are performed with 8-bit precision leading to a 3.7× improvement in computational efficiency compared to equivalent digital systems at that accuracy. 
    more » « less
  3. null (Ed.)
    Spatial linear transforms that process multiple parallel analog signals to simplify downstream signal processing find widespread use in multi-antenna communication systems, machine learning inference, data compression, audio and ultrasound applications, among many others. In the past, a wide range of mixed-signal as well as digital spatial transform circuits have been proposed-it is, however, a longstanding question whether analog or digital transforms are superior in terms of throughput, power, and area. In this paper, we focus on Hadamard transforms and perform a systematic comparison of state-of-the-art analog and digital circuits implementing spatial transforms in the same 65 nm CMOS technology. We analyze the trade-offs between throughput, power, and area, and we identify regimes in which mixed-signal or digital Hadamard transforms are preferable. Our comparison reveals that (i) there is no clear winner and (ii) analog-to-digital conversion is often dominating area and energy efficiency-and not the spatial transform. 
    more » « less