skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schaefer, Henry F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present an efficient, open-source formulation for coupled-cluster theory through perturbative triples with domain-based local pair natural orbitals [DLPNO-CCSD(T)]. Similar to the implementation of the DLPNO-CCSD(T) method found in the ORCA package, the most expensive integral generation and contraction steps associated with the CCSD(T) method are linear-scaling. In this work, we show that the t1-transformed Hamiltonian allows for a less complex algorithm when evaluating the local CCSD(T) energy without compromising efficiency or accuracy. Our algorithm yields sub-kJ mol−1 deviations for relative energies when compared with canonical CCSD(T), with typical errors being on the order of 0.1 kcal mol−1, using our TightPNO parameters. We extensively tested and optimized our algorithm and parameters for non-covalent interactions, which have been the most difficult interaction to model for orbital (PNO)-based methods historically. To highlight the capabilities of our code, we tested it on large water clusters, as well as insulin (787 atoms). 
    more » « less
    Free, publicly-accessible full text available August 28, 2025
  2. Dithiolene-based N-heterocyclic silane demonstrates unusual dual nucleophilic reactivity toward boron halides. 
    more » « less
  3. From left to right and top to bottom, the five Ge2H2+structures are shown:trans, monobridged, butterfly, germylidene, and linear. 
    more » « less
    Free, publicly-accessible full text available April 24, 2025
  4. null (Ed.)