Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Plate motion obliquity along the dominantly transform Queen Charlotte plate boundary (QCPB) peaks offshore Haida Gwaii. To investigate the effects of obliquity on plate boundary deformation, we analyze continuous seismic waveforms from temporary and permanent stations from 1998 to 2020 to generate a catalog of ∼50,000 earthquakes across Haida Gwaii. We use an automated technique based on auto‐regressive phase detection and onset estimation to obtain the initial seismic catalog, integrate existing catalogs, invert for 3D velocity structure using data from the best constrained period, and relocate the entire catalog using the new 3D velocity model. We investigate the seismically active sections of the transcurrent Queen Charlotte fault (QCF), noting that little seismicity locates directly along its bathymetrically defined trace. Instead, seismicity illuminates a complex system of segmented structures with variable geometries along strike. Other clusters highlight active shallow faults within the highly deformed Queen Charlotte terrace. Few aftershocks appear on the thrust plane of the 2012Mw7.8 Haida Gwaii earthquake except near its inferred intersection with the QCF at 15–20 km depths, suggesting elevated residual stress at the juncture of slip‐partitioning. Deep crustal seismicity (up to ∼20 km depths) beneath central Haida Gwaii aligned parallel to the strike of the thrust plane may represent landward underthrusting of the Pacific plate. Our results suggest possible coseismic strike‐slip rupture on the QCF during the 2012 earthquake and add support to the thesis that highly oblique transform boundaries are viable settings for subduction initiation.more » « less
-
SUMMARY Global variations in the propagation of fundamental-mode and overtone surface waves provide unique constraints on the low-frequency source properties and structure of the Earth’s upper mantle, transition zone and mid mantle. We construct a reference data set of multimode dispersion measurements by reconciling large and diverse catalogues of Love-wave (49.65 million) and Rayleigh-wave dispersion (177.66 million) from eight groups worldwide. The reference data set summarizes measurements of dispersion of fundamental-mode surface waves and up to six overtone branches from 44 871 earthquakes recorded on 12 222 globally distributed seismographic stations. Dispersion curves are specified at a set of reference periods between 25 and 250 s to determine propagation-phase anomalies with respect to a reference Earth model. Our procedures for reconciling data sets include: (1) controlling quality and salvaging missing metadata; (2) identifying discrepant measurements and reasons for discrepancies; (3) equalizing geographic coverage by constructing summary rays for travel-time observations and (4) constructing phase velocity maps at various wavelengths with combination of data types to evaluate inter-dataset consistency. We retrieved missing station and earthquake metadata in several legacy compilations and codified scalable formats to facilitate reproducibility, easy storage and fast input/output on high-performance-computing systems. Outliers can be attributed to cycle skipping, station polarity issues or overtone interference at specific epicentral distances. By assessing inter-dataset consistency across similar paths, we empirically quantified uncertainties in traveltime measurements. More than 95 per cent measurements of fundamental-mode dispersion are internally consistent, but agreement deteriorates for overtones especially branches 5 and 6. Systematic discrepancies between raw phase anomalies from various techniques can be attributed to discrepant theoretical approximations, reference Earth models and processing schemes. Phase-velocity variations yielded by the inversion of the summary data set are highly correlated (R ≥ 0.8) with those from the quality-controlled contributing data sets. Long-wavelength variations in fundamental-mode dispersion (50–100 s) are largely independent of the measurement technique with high correlations extending up to degree ∼25. Agreement degrades with increasing branch number and period; highly correlated structure is found only up to degree ∼10 at longer periods (T > 150 s) and up to degree ∼8 for overtones. Only 2ζ azimuthal variations in phase velocity of fundamental-mode Rayleigh waves were required by the reference data set; maps of 2ζ azimuthal variations are highly consistent between catalogues ( R = 0.6–0.8). Reference data with uncertainties are useful for improving existing measurement techniques, validating models of interior structure, calculating teleseismic data corrections in local or multiscale investigations and developing a 3-D reference Earth model.more » « less
An official website of the United States government
