skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schaller, Richard D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large and faceted nanoparticles, such as gold bipyramids, presently require synthesis using alkyl ammonium halide ligands in aqueous conditions to stabilize the structure, which impedes subsequent transfer and suspension of such nanoparticles in low polarity solvents despite success with few nanometer gold nanoparticles of shapes such as spheres. Phase transfer methodologies present a feasible avenue to maintain colloidal stability of suspensions and move high surface energy particles into organic solvent environments. Here, we present a method to yield stable suspensions of gold bipyramids in low-polarity solvents, including methanol, dimethylformamide, chloroform, and toluene, through the requisite combination of two capping agents and the presence of a co-solvent. By utilizing PEG-SH functionalization for stability, dodecanethiol (DDT) as the organic-soluble capping agent, and methanol to aid in the phase transfer, gold bipyramids with a wide-range of aspect ratios and sizes can be transferred between water and chloroform readily and maintain colloidal stability. Subsequent transfer to various organic and low-polarity solvents is then demonstrated for the first time. 
    more » « less
    Free, publicly-accessible full text available September 24, 2025
  2. Free, publicly-accessible full text available September 26, 2025
  3. The widespread utilization of perovskite-based photovoltaics requires probing both the structural and optical properties under extreme operating conditions to gain a holistic understanding of the material behavior under stressors. Here, we investigate the temperature-dependent behavior of mixed A-site cation lead triiodide perovskite thin films (85% methylammonium and 15% formamidinium) in the range from 300 to 20 K. Through a combination of optical and structural techniques, we find that the tetragonal-to-orthorhombic phase transition occurs at ∼110 K for this perovskite composition, as indicated by the change in the diffraction pattern. With decreasing temperature, the quantum yield increases with a concurrent elongation of the carrier lifetimes, indicating suppression of nonradiative recombination pathways. Interestingly, in contrast to single A-site cation perovskites, an additional optical transition appears in the absorption spectrum when the phase transition is approached, which is also reflected in the emission spectrum. We propose that the splitting of the optical absorption and emission is due to local segregation of the mixed cation perovskite during the phase transition. 
    more » « less
    Free, publicly-accessible full text available October 8, 2025
  4. Free, publicly-accessible full text available July 1, 2025
  5. Free, publicly-accessible full text available June 26, 2025
  6. Two-dimensional cadmium selenide nanoplatelets (NPLs) exhibit large absorption cross sections and homogeneously broadened band-edge transitions that offer utility in wide-ranging optoelectronic applications. Here, we examine the temperature-dependence of amplified spontaneous emission (ASE) in 4- and 5-monolayer thick NPLs and show that the threshold for close-packed (neat) films decreases with decreasing temperature by a factor of 2–10 relative to ambient temperature owing to extrinsic (trapping) and intrinsic (phonon-derived line width) factors. Interestingly, for pump intensities that exceed the ASE threshold, we find development of intense emission to lower energy in particular provided that the film temperature is ≤200 K. For NPLs diluted in an inert polymer, both biexcitonic ASE and low-energy emission are suppressed, suggesting that described neat-film observables rely upon high chromophore density and rapid, collective processes. Transient emission spectra reveal ultrafast red-shifting with the time of the lower energy emission. Taken together, these findings indicate a previously unreported process of amplified stimulated emission from polyexciton states that is consistent with quantum droplets and constitutes a form of exciton condensate. For studied samples, quantum droplets form provided that roughly 17 meV or less of thermal energy is available, which we hypothesize relates to polyexciton binding energy. Polyexciton ASE can produce pump-fluence-tunable red-shifted ASE even 120 meV lower in energy than biexciton ASE. Our findings convey the importance of biexciton and polyexciton populations in nanoplatelets and show that quantum droplets can exhibit light amplification at significantly lower photon energies than biexcitonic ASE. 
    more » « less
  7. Semiconductor nanocrystals (NCs) offer prospective use as active optical elements in photovoltaics, light-emitting diodes, lasers, and photocatalysts due to their tunable optical absorption and emission properties, high stability, and scalable solution processing, as well as compatibility with additive manufacturing routes. Over the course of experiments, during device fabrication, or while in use commercially, these materials are often subjected to intense or prolonged electronic excitation and high carrier densities. The influence of such conditions on ligand integrity and binding remains underexplored. Here, we expose CdSe NCs to laser excitation and monitor changes in oleate that is covalently attached to the NC surface using nuclear magnetic resonance as a function of time and laser intensity. Higher photon doses cause increased rates of ligand loss from the particles, with upward of 50% total ligand desorption measured for the longest, most intense excitation. Surprisingly, for a range of excitation intensities, fragmentation of the oleate is detected and occurs concomitantly with formation of aldehydes, terminal alkenes, H2, and water. After illumination, NC size, shape, and bandgap remain constant although low-energy absorption features (Urbach tails) develop in some samples, indicating formation of substantial trap states. The observed reaction chemistry, which here occurs with low photon to chemical conversion efficiency, suggests that ligand reactivity may require examination for improved NC dispersion stability but can also be manipulated to yield desired photocatalytically accessed chemical species. 
    more » « less
  8. Temperatures below ambient room temperature (298 K) are ideal for perovskite-sensitized upconversion devices where maximum efficiency is reached at 170 K. Here, the underlying triplet diffusion rate governs the overall upconversion dynamics. 
    more » « less