Learning to process speech in a foreign language involves learning new representations for mapping the auditory signal to linguistic structure. Behavioral experiments suggest that even listeners that are highly proficient in a non-native language experience interference from representations of their native language. However, much of the evidence for such interference comes from tasks that may inadvertently increase the salience of native language competitors. Here we tested for neural evidence of proficiency and native language interference in a naturalistic story listening task. We studied electroencephalography responses of 39 native speakers of Dutch (14 male) to an English short story, spoken by a native speaker of either American English or Dutch. We modeled brain responses with multivariate temporal response functions, using acoustic and language models. We found evidence for activation of Dutch language statistics when listening to English, but only when it was spoken with a Dutch accent. This suggests that a naturalistic, monolingual setting decreases the interference from native language representations, whereas an accent in the listener's own native language may increase native language interference, by increasing the salience of the native language and activating native language phonetic and lexical representations. Brain responses suggest that such interference stems from words from the native language competing with the foreign language in a single word recognition system, rather than being activated in a parallel lexicon. We further found that secondary acoustic representations of speech (after 200 ms latency) decreased with increasing proficiency. This may reflect improved acoustic–phonetic models in more proficient listeners.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Significance Statement Behavioral experiments suggest that native language knowledge interferes with foreign language listening, but such effects may be sensitive to task manipulations, as tasks that increase metalinguistic awareness may also increase native language interference. This highlights the need for studying non-native speech processing using naturalistic tasks. We measured neural responses unobtrusively while participants listened for comprehension and characterized the influence of proficiency at multiple levels of representation. We found that salience of the native language, as manipulated through speaker accent, affected activation of native language representations: significant evidence for activation of native language (Dutch) categories was only obtained when the speaker had a Dutch accent, whereas no significant interference was found to a speaker with a native (American) accent. -
null (Ed.)Multimodal word discovery (MWD) is often treated as a byproduct of the speech-to-image retrieval problem. However, our theoretical analysis shows that some kind of alignment/attention mechanism is crucial for a MWD system to learn meaningful word-level representation. We verify our theory by conducting retrieval and word discovery experiments on MSCOCO and Flickr8k, and empirically demonstrate that both neural MT with self-attention and statistical MT achieve word discovery scores that are superior to those of a state-of-the-art neural retrieval system, outperforming it by 2% and5% alignment F1 scores respectively.more » « less
-
null (Ed.)The idea of combining multiple languages’ recordings to train a single automatic speech recognition (ASR) model brings the promise of the emergence of universal speech representation. Recently, a Transformer encoder-decoder model has been shown to leverage multilingual data well in IPA transcriptions of languages presented during training. However, the representations it learned were not successful in zero-shot transfer to unseen languages. Because that model lacks an explicit factorization of the acoustic model (AM) and language model (LM), it is unclear to what degree the performance suffered from differences in pronunciation or the mismatch in phonotactics. To gain more insight into the factors limiting zero-shot ASR transfer, we replace the encoder-decoder with a hybrid ASR system consisting of a separate AM and LM. Then, we perform an extensive evaluation of monolingual, multilingual, and crosslingual (zero-shot) acoustic and language models on a set of 13 phonetically diverse languages. We show that the gain from modeling crosslingual phonotactics is limited, and imposing a too strong model can hurt the zero-shot transfer. Furthermore, we find that a multilingual LM hurts a multilingual ASR system’s performance, and retaining only the target language’s phonotactic data in LM training is preferable.more » « less
-
null (Ed.)Only a handful of the world’s languages are abundant with the resources that enable practical applications of speech processing technologies. One of the methods to overcome this problem is to use the resources existing in other languages to train a mul-tilingual automatic speech recognition (ASR) model, which, intuitively, should learn some universal phonetic representations.In this work, we focus on gaining a deeper understanding ofhow general these representations might be, and how individual phones are getting improved in a multilingual setting. To that end, we select a phonetically diverse set of languages, and perform a series of monolingual, multilingual and crosslingual (zero-shot) experiments. The ASR is trained to recognize the International Phonetic Alphabet (IPA) token sequences. We ob-serve significant improvements across all languages in the multilingual setting, and stark degradation in the crosslingual setting, where the model, among other errors, considers Javanese as a tone language. Notably, as little as 10 hours of the target language training data tremendously reduces ASR error rates.Our analysis uncovered that even the phones that are unique to a single language can benefit greatly from adding training data from other languages - an encouraging result for the low-resource speech communitymore » « less