skip to main content

Search for: All records

Creators/Authors contains: "Schatz, George C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a comprehensive study of the theory of entangled two-photon emission/absorption (E2P-EA) between a many-level cascade donor and a many-level acceptor (which could be quantum dots or molecules) using second-order perturbation theory and where the donor–acceptor pair is in a homogeneous but dispersive medium. To understand the mechanism of E2P-EA, we analyze how dipole orientation, radiative lifetime, energy detuning between intermediate states, separation distance, and entanglement time impact the E2P-EA rate. Our study shows that there are quantum interference effects in the E2P-EA rate expression that lead to oscillations in the rate as a function of entanglement time. Furthermore, we find that the E2P-EA rate for a representative system consisting of two quantum dots can be comparable to one-photon emission/absorption (OP-EA) when donor and acceptor are within a few nm. However, the E2P-EA rate falls off much more quickly with separation distance than does OP-EA. 
    more » « less
    Free, publicly-accessible full text available August 21, 2024
  2. Abstract Developing an eco-friendly, efficient, and highly selective gold-recovery technology is urgently needed in order to maintain sustainable environments and improve the utilization of resources. Here we report an additive-induced gold recovery paradigm based on precisely controlling the reciprocal transformation and instantaneous assembly of the second-sphere coordinated adducts formed between β-cyclodextrin and tetrabromoaurate anions. The additives initiate a rapid assembly process by co-occupying the binding cavity of β-cyclodextrin along with the tetrabromoaurate anions, leading to the formation of supramolecular polymers that precipitate from aqueous solutions as cocrystals. The efficiency of gold recovery reaches 99.8% when dibutyl carbitol is deployed as the additive. This cocrystallization is highly selective for square-planar tetrabromoaurate anions. In a laboratory-scale gold-recovery protocol, over 94% of gold in electronic waste was recovered at gold concentrations as low as 9.3 ppm. This simple protocol constitutes a promising paradigm for the sustainable recovery of gold, featuring reduced energy consumption, low cost inputs, and the avoidance of environmental pollution. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Multiphoton absorption of entangled photons offers ways for obtaining unique information about chemical and biological processes. Measurements with entangled photons may enable sensing biological signatures with high selectivity and at very low light levels to protect against photodamage. In this paper, we present a theoretical and experimental study of the excitation wavelength dependence of the entangled two-photon absorption (ETPA) process in a molecular system, which provides insights into how entanglement affects molecular spectra. We demonstrate that the ETPA excitation spectrum can be different from that of classical TPA as well as that for one-photon resonant absorption (OPA) with photons of doubled frequency. These results are modeled by assuming the ETPA cross-section is governed by a two-photon excited state radiative linewidth rather than by electron-phonon interactions, and this leads to excitation spectra that match the observed results. Further, we find that the two-photon-allowed states with highest TPA and ETPA intensities have high electronic entanglements, with ETPA especially favoring states with the longest radiative lifetimes. These results provide concepts for the development of quantum light–based spectroscopy and microscopy that will lead to much higher efficiency of ETPA sensors and low-intensity detection schemes. 
    more » « less
    Free, publicly-accessible full text available August 29, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. In plasma-driven solution electrolysis (PDSE), gas-phase plasma-produced species interact with an electrolytic solution to produce, for example, nanoparticles. An atmospheric pressure plasma jet (APPJ) directed onto a liquid solution containing a metallic salt will promote reduction of metallic ions in solution, generating metallic clusters that nucleate to form nanoparticles. In this article, results from a computational investigation are discussed of a PDSE process in which a radio-frequency APPJ sustained in helium impinges on a silver nitrate solution, resulting in growth of silver nanoparticles. A reaction mechanism was developed and implemented in a global plasma chemistry model to predict nanoparticle growth. To develop the reaction mechanism, density functional theory was used to generate probable silver growth pathways up to Ag 9 . Neutral clusters larger than Ag 9 were classified as nanoparticles. Kinetic reaction rate coefficients for thermodynamically favorable growth pathways were estimated based on an existing, empirically determined base reaction mechanism for smaller Ag particle interactions. These rates were used in conjunction with diffusion-controlled reaction rate coefficients that were calculated for other Ag species. The role of anions in reduction of Ag n ions in forming nanoparticles is also discussed. Oxygen containing impurities or admixtures to the helium, air entrainment into the APPJ, and dissociation of saturated water vapor above the solution can produce additional reactive oxygen species in solution, resulting in the production of anions and [Formula: see text] in particular. For a given molarity, delivering a sufficient fluence of reducing species will produce similar nanoparticle densities and sizes for all applied power levels. Comparisons are made to alternate models for nanoparticle formation, including charged nanoparticles and use of direct current plasmas. 
    more » « less
  6. Free, publicly-accessible full text available July 1, 2024
  7. Nanocluster-based photoresists enable 3D printing of polymer nanocomposites with enhanced mechanical strength and stability. 
    more » « less